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Segmented regression models offer model flexibility and interpretability
as compared to the global parametric and the nonparametric models, and yet
are challenging in both estimation and inference. We consider a four-regime
segmented model for temporally dependent data with segmenting boundaries
depending on multivariate covariates with non-diminishing boundary effects.
A mixed integer quadratic programming algorithm is formulated to facilitate
the least square estimation of the regression and the boundary parameters.
The rates of convergence and the asymptotic distributions of the least square
estimators are obtained for the regression and the boundary coefficients, re-
spectively. We propose a smoothed regression bootstrap to facilitate inference
on the parameters and a model selection procedure to select the most suitable
model within the model class with at most four segments. Numerical simula-
tions and a case study on air pollution in Beijing are conducted to demonstrate
the proposed approach, which shows that the segmented models with three or
four regimes are suitable for the modeling of the meteorological effects on
the PM2.5 concentration.

1. Introduction. Regression analysis is a pivotal tool in modeling the relationship be-
tween dependent and independent variables and for prediction purposes. It is often conducted
via two types of models: the global parametric and local nonparametric models. The global
parametric models, such as the linear and polynomial regression models, have the advan-
tages of interpretability and computation simplicity. However, they often perform poorly due
to model misspecification as the underlying model may change over different parts of the
domain. To have better adaptability, nonparametric local models facilitated by the kernel
smoothing, the wavelets or splines, or the regression trees, have been introduced. The local
model’s complexities increase with the data’s dimension and the sample sizes, elevating the
risk of overfitting. The segmented model is a compromise between the global and the local
models as they are as interpretable as the global parametric models but have improved model
specifications.

Conventional threshold regression model (also called regime switching model) [32] was
the first generation of the segmented models. It assumes that the regression function is of form
E(Y |X,Z) =XTβ +XTδ1(Z > r), where Z is an observable scalar variable that can be
either a time index or a pre-specified random variable. The threshold regression model has
a wide range of applications in empirical research, ranging from modeling effects of shocks
to economic systems over the business cycles [27], the dose-response models in biostatistics
[29], and in sociological research [5]. Statistical inference of the threshold regression model
with a univariate splitting variable has been well developed. [6], [15] and [16] established
asymptotic properties of the least squares estimators of the threshold regression models and
proposed tests on the threshold effect. As extensions, [12] and [23] introduced the multiple
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threshold regression model E(Y |X,Z) =XTβ+
∑K

k=1X
Tδk1(Z > rk) with K splits and

K + 1 regimes (segments) and investigated the statistical inference problems.
A limitation of the existing threshold regression approach is that the splitting threshold

is largely determined by a univariate variable Z . [1] showed difficulties in finding the uni-
variate splitting variable in the analysis of macroeconomic effects of fiscal policies, and [19]
indicated that a univariate Z was not suitable to regulate the gene effects on disease risks
as the risk of developing a particular disease was due to multiple genes. Recently, [22] and
[35] extended the threshold regression to allow regime switching driven by a multivariate
random vector Z which is either observable or obtained via a factor model. Although these
works overcome the limitation of the univariate split variable, the setting of at most two
regimes can be restrictive for some applications. Machine learning methods, such as the con-
vex piece-wise linear fitting, can produce segmented linear regression with unlimited number
of regimes. However, as these methods were focused on the fitting performances, the under-
lying segmented models may not be identifiable with the suggested procedures. The finite
mixture models (FMM) proposed by [20] can also produce a subgroup linear model fitting
for heterogeneous data. However, the subgroups from the FMMs do not lead to parameterized
boundaries, and thus are less interpretable than the segmented linear models.

Our study is motivated from modelling the meteorological effects on PM2.5 concentration
in Beijing, where a global parametric model is too simple to offer good fitting performances
and a nonparametric model may be too local and do not provide sufficient atmospheric in-
terpretation. The air pollution in Beijing is typically governed by different meteorological
regimes, namely the removal process by favourable northerly wind which removes PM2.5 to
a low level, the calm regime between the northerly cleaning and the start of the transported
pollution driven under the southerly wind, the pollution growth regime under southerly wind
that transports polluted air from the south, and air stagnation regime after the pollution has
peaked, followed by the next removal process by the northerly wind. These motivate the four-
regime segmented regression model in this work. As the air quality and meteorological data
are time series, we consider temporally dependent data in the study.

Motivated by the air pollution problem, we consider four-regime regression models whose
splitting hypersplines are determined by linear combinations of two multivariate covariates
Z1 and Z2, where the splitting variables Z1 and Z2 can be any regressors, and the two split-
ting hyperplanes can intersect. These make the four regime-regression model less restrictive
than the multiple threshold regression model of [2] and [23] where the splitting variable Z is
univariate, and hence allows not necessarily parallel boundary hyperplanes. The four-regime
models include two and three regime models as special cases, where the splitting boundaries
are either parallel or two adjacent regimes share the same regression coefficient and hence
can be merged.

The main contributions of the study are the following. We first establish the consistency
and the asymptotic distributions of the least squares estimators (LSEs) for both the bound-
ary and the regression coefficients under the four-regime regression model with temporally
dependent ρ-mixing observations, overcoming challenges posed by (i) the irregular objective
function, (ii) the fixed boundary edge effects rather than the diminishing effects commonly
treated in the literature and (iii) the unconventional form of the asymptotic distribution for
the boundary coefficient vector. It is found that the asymptotic distribution of LSEs for the
boundary coefficients is determined by the minimizers of a compound multivariate Poisson
process, whose jumps depend on the points near the true hyperplanes, and the boundary co-
efficient estimators are asymptotically independent of the regression coefficient estimators.

The generalization to the four regimes with two splitting boundaries brings considerable
computational challenges. Although the LSE of the conventional threshold regression can be
obtained with the grid search method, it is not practical in our setting as the boundaries are
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defined with multivariate variables. To overcome the challenges, we draw inspiration from
[3] and [22] and propose an algorithm based on the mixed integer quadratic programming
(MIQP), which is not only computationally efficient but also can be further accelerated by
adding an iterative component. It is shown the algorithm can facilitate efficient computation
of the LSEs with the rather non-regular form of the least squares objective function.

To permit statistical inference, especially in light of the rather unusual asymptotic distri-
bution for the boundary coefficient estimates, we develop a smoothed regression bootstrap
method and establish its consistency for approximating the distribution of the LSEs. Further-
more, the properties of the LSEs under degenerated segmented models with less than four
regimes are investigated. In order to find the right segmented models with up to four seg-
ments, we propose a model selection method with a backward elimination procedure that is
shown to be able to consistently choose the right number of regimes.

The paper is organized as follows. Section 2 introduces the four-regime regression model.
Section 3 presents the theoretical properties and the asymptotic distribution of the LSEs for
the regression and boundary parameters. In Section 4, we construct a mixed integer quadratic
programming (MIQP) algorithm to efficiently compute the LSEs. Section 5 considers infer-
ence problems for the four-regime regression model. Section 6 investigates the properties
of the proposed estimator under degenerated models with less than four regimes and pro-
poses a model selection method. Sections 7 and 8 report simulation and empirical results,
respectively. Section 9 conclude the paper with possible extensions. All technical proofs are
relegated to a supplementary material (SM, [33]).

2. Model setup. We first introduce some notations. We use 1(A) for the indicator func-
tion of an event A, ∥v∥ = (

∑d
i=1 v

2
i )

1/2 for the L2-norm of vector v = (v1, · · · , vd)T and
N (v0; δ) = {v : ∥v−v0∥ ≤ δ} for the δ-neighborhood of v. Define v−1 as the sub-vector of
v excluding its first element, i.e., v−1 = (v2, · · · , vd)T. We use |E| to denote the cardinality
of a set E. For any two sets E1 and E2, we denote E1△E2 = (E1 \E2)∪ (E2 \E1) as their
symmetric difference.

Let {Wt = (Yt,Xt,Z1,t,Z2,t)}Tt=1 be a sequence of observations, where Yt is the re-
sponse variable to covariates Xt ∈Rp and two partitioning variables Zi,t ∈Rdi for i= 1 and
2, which determine the boundaries of the segments or regimes. The variables Xt, Z1,t and
Z2,t can share common variables. The four-regime regression model is

(2.1) Yt =

4∑
k=1

XT

t βk01{Zt ∈Rk(γ0)}+ εt,

where Zt is the union of variables of Z1,t and Z2,t, {βk0}4k=1 are the regression coeffi-
cients, {γi0}2j=1 are the boundary coefficients, εt is the residual satisfying E(εt|Xt,Zt) = 0
with a finite second moment, and Rk(γ0) is the k-th region split by the hyperplanes
{Hi0 : z

T

i γi0 = 0}2i=1 for zi ∈Rdi . The overall parameter of interest is θ = (γT,βT)T where
β = (βT

1 , · · · ,βT

4 )
T and γ = (γT

1 ,γ
T

2 )
T. We let θ0, β0 and γ0 denote the respective true

parameters. For any observation Wt, it is the signs of ZT

1,tγ10 and ZT

2,tγ20 that determine
which regression region it is located at. Denote by 11(U,V ) = 1(U > 0, V > 0),12(U,V ) =
1(U ≤ 0, V > 0),13(U,V ) = 1(U ≤ 0, V ≤ 0) and 14(U,V ) = 1(U > 0, V ≤ 0). Then we
can write Model (2.1) equivalently as

(2.2) Yt =

4∑
k=1

XT

t βk01k(Z
T

1,tγ10,Z
T

2,tγ20) + εt,

which explicitly reflects the role of γ0 in Model (2.1).
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REMARK 2.1. Although the splitting hyperplanes appears linear, non-linearity may be
accommodated by including nonlinear transformed variables in Zi(i = 1,2), for instance,
Z1 = (Z1,Z

2
1 ,1)

T. The same extension can be conducted to X . It is also noted that in
the special case of Z1,t having the same distribution with Z2,t, the four segments under
γ0 = (γT

10,γ
T

20)
T are not distinguishable from that under γ̃0 = (γT

20,γ
T

10)
T. Consequently, θ0

is only identifiable up to some permutations. To avoid such situation, we assume that the
distributions of Z1,t and Z2,t are distinct.

REMARK 2.2. Since the signs of ZT

1γ10 and ZT

2γ20 determine the regimes in Model
(2.1), γ10 and γ20 have to be normalized in order to be identifiable. For any candidate γi of
γi0, we normalize it by its first element γi,1, resulting in γi =: (1, γ̃i) where γ̃i is assumed to
take values in a compact set. As noted in [22], an alternative normalization is ∥γi∥2 = 1. In
this study, we employ the former as it has one less parameter.

3. Estimation and asymptotic properties. In this section, we outline the least squares
(LS) estimation for θ0 of the four-regime regression model, and establish the convergence
rates of the LS estimators for the regression coefficient β̂ and the boundary coefficient γ̂
followed by providing their asymptotic distributions.

With the data sample {Wt = (Yt,Xt,Z1,t,Z2,t)}Tt=1, in view of E(εt|Xt,Zt) = 0, we
define the following least squares criterion function

MT (θ) =
1

T

T∑
t=1

{
Yt −

4∑
k=1

XT

t βk1k(Z
T

1,tγ1,Z
T

2,tγ2)

}2

=:
1

T

T∑
t=1

m(Wt,θ),(3.1)

and the parameter space is Θ= Γ1 × Γ2 ×B4, where Γi is a compact set in Rdi and the first
element of any γ ∈ Γi is normalized as 1 for each i = 1,2, and B is a compact set in Rp.
Since MT (θ) is strictly convex in β and piece-wise constant in γ with at most T jumps, it
has a unique minimizer β̂ = (β̂T

1 , · · · , β̂T

4 )
T for β, but a set of minimizers for γ, which is

denoted as Ĝ, such that a LSE θ̂ = (γ̂T, β̂T)T satisfies

MT (θ̂) = inf
θ∈Θ

MT (θ) for any γ̂ ∈ Ĝ.(3.2)

It is noted that for any two γ̂, γ̂ ′ ∈ Ĝ, the segmented regimes under the corresponding hyper-
planes must be the same, as otherwise the estimated regression coefficients will be distinct.
In addition, the set Ĝ is convex since for each i = 1 or 2, ZT

i,tγ̂i > 0 and ZT

i,tγ̂
′
i > 0 imply

that ZT

i,tγ̃i > 0 for all γ̃i = αγ̂i + (1− α)γ̂ ′
i with α ∈ [0,1]. In the rest of this section, we

investigate the properties of the LS estimators θ̂ = (γ̂T, β̂T)T with γ̂ ∈ Ĝ.

3.1. Identification and consistency. Here we discuss the identification of θ0 and estab-
lish the consistency of the LSEs θ̂. Let W = (Y,X,Z1,Z2) follow the stationary distri-
bution P0 of Wt, and qi = ZT

i γi0 for i = 1 and 2 to indicate whether Z = (Z1,Z2) is
located on the true hyperplane Hi0 : Z

T

i γi0 = 0 or not. Let S(i) be the set consisting of
index pairs (k,h) if Rk(γ0) and Rh(γ0) are two adjacent regions split by Hi0. Specifically,
S(1) = {(1,2), (2,1)(3,4), (4,3)} and S(2) = {(1,4), (4,1), (2,3), (3,2)} according to the
provision in the lines above (2.2). Furthermore, let Z be the union vector of variables in Z1

and Z2

ASSUMPTION 1 (temporal dependence). (i) The time series {Wt}t≥1 is strictly station-
ary and ρ-mixing with the mixing coefficient ρ(t) ≤ cαt for finite positive constants c and
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α ∈ (0,1), where ρ(t) = sups,t≥1

{
supCorr(f, g) : f ∈Ωs1, g ∈Ω∞

s+t

}
, where Ωji denotes the

σ-filed generated by {Wt : i≤ t≤ j}. (ii) E(εt|Ft−1) = 0, where Ft−1 is a filtration gener-
ated by {(Xi,Z1i,Z2i, εi−1) : i≤ t}.

ASSUMPTION 2 (identification). For i ∈ {1,2} and k,h ∈ {1, · · · ,4}, (i) Z1 and Z2 are
not identically distributed. (ii) There exists a j ∈ {1, · · · , di} such that P(|qi| ≤ ϵ|Z−j,i)> 0
almost surely for Z−j,i and for any ϵ > 0, where Z−j,i is the vector after excluding Zi’s
jth element; without loss of generality, assume j = 1. (iii) For any γ ∈ Γ1 × Γ2 and
P{Z ∈Rk(γ0)∩Rh(γ)}> 0, the smallest eigenvalue of E{XXT|Z ∈Rk(γ0)∩Rh(γ)} ≥
λ0 for some constant λ0 > 0. (iv) For (k,h) ∈ S(i), ∥βk0 − βh0∥ > c0 for some constant
c0 > 0.

ASSUMPTION 3. (i) E(Y 4) <∞, E(∥X∥4) <∞ and maxi=1,2E(∥Zi∥) <∞. (ii) For
each i = 1 and 2, P(ZT

i γ1 < 0<ZT

i γ2) ≤ c1∥γ1 − γ2∥ if γ1,γ2, ∈ N (γi0; δ0), for some
constants δ0, c1 > 0.

Assumption 1 (i) prescribes the strict stationarity and ρ-mixing condition on the time se-
ries, as used in the existing time-series threshold regression literature ([16] and [22]). It is
noted that such a decaying rate is only required in deriving the limiting distribution of γ̂,
which can be relaxed to the polynomial decay for Theorem 3.1 and Theorem 3.2. Assump-
tion 1 (ii) imposes a martingale difference condition for the noises, which is standard for time
series regressions.

Assumption 2 is for the identification of θ0. Specifically, without Assumption 2 (i),
(γT

1 ,γ
T

2 )
T are not distinguishable from (γT

2 ,γ
T

1 )
T as discussed in Remark 2.1. It is noted that

the methods and theories in the rest of the papers are applicable without such a condition,
while a permutation for γ1 and γ2 is possibly required. Section F of the SM ([33]) provides
sufficient conditions for Assumption 2 (ii), which ensures there are positive probability of
observations located around the true splitting hyperplanes. Discrete variables can be accom-
modated in Zi, as long as it includes at least one continuous variable, say Z1,i. Otherwise,
if all the splitting variables are discretely distributed, then E{m(W ,θ)} will be piece-wise
constant and γ0 will not be identifiable. Assumption 2 (iii) guarantees that the splittings by
candidate hyperplanes do not lead to degenerated covariance matrices, which is needed for
the identification of β0. Assumption 2 (iv) means that adjacent regimes have distinguishable
regression coefficients so that the splitting effect of each hyperplane is strictly bounded away
0, which is similar to the fixed threshold effect models treated in [6] and [35]. Assumption
3 (i) is a moment condition, and (ii) means P(ZT

i γ < 0) is continuous at γi0, implying that
E{m(W ;θ)} is continuous at the true parameter θ0.

The identification of θ0 is formally ensured in the following proposition.

PROPOSITION 3.1. Under Assumptions 1 and 2, E{m(W ,θ)}> E{m(W ,θ0)} for any
θ ∈Θ and θ ̸= θ0.

The proposition ensures that despite the multiple LS estimates γ̂, the underlying γ0 is
unique. The following theorem shows that any LSE estimators θ̂ = (γ̂T, β̂T)T defined in
(3.2) are consistent to θ. It is worth noting that though there exist infinitely many solutions γ̂
which are collected in the convex set Ĝ, the consistency of each γ̂ can be guaranteed, which
implies that the solution set Ĝ is a local neighborhood of γ0 with a shrinking radius.
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THEOREM 3.1. Under Assumptions 1–3, let θ̂ = (γ̂T, β̂T)T for any γ̂ ∈ Ĝ, , then θ̂
p−→ θ0

as T →∞.

With the estimated splitting hyperplanes, each datum can be classified into one of the four
estimated regimes {Rk(γ̂)}4k=1. Besides the estimation accuracy of θ0, the classification
accuracy is also an important criterion. It is shown next that the estimated regime Rk(γ̂) is
consistent to the true regime Rk(γ0) for each k = 1, · · · ,4.

COROLLARY 3.1. Under the conditions of Theorem 3.1, P{Z ∈Rk(γ0)△Rk(γ̂)}→ 0
as T →∞ for all k ∈ {1, · · · ,4}.

3.2. Convergence rates and asymptotic distributions. We first study the convergence
rates of the LSEs β̂ and γ̂, which require the following conditions.

ASSUMPTION 4. (i) For i = 1 and 2, there exist constants δ1, c2 > 0 such that if ϵ ∈
(0, δ1) then P(|qi|< ϵ|Z−1,i)≥ c2ϵ almost surely. (ii) For i= 1 and 2, there exists a neigh-
borhood Ni =N (γi0; δ2) of γi0 for some δ2 > 0, such that infγ∈Ni

E(∥XTδkh,0∥|ZT

i γ =
0) > 0 almost surely for each (k,h) ∈ S(i), where δkh,0 = βk0 − βh0. (iii) P(ZT

1γ1 < 0 <
ZT

1γ2,Z
T

2γ3 < 0<ZT

2γ4)≤ c3∥γ1−γ2∥∥γ3−γ4∥ for some constant c3 > 0 if γ1,γ2 ∈N1

and γ3,γ4 ∈ N2. (iv) supγ∈Ni
E(∥X∥8|ZT

i γ = 0) <∞ and supγ∈Ni
E(ε8|ZT

i γ = 0) <∞
almost surely.

Assumption 4 (i) strengthens Assumption 2 (i) and is satisfied when the conditional density
fqi|Z−1,i

(q) is continuous and bounded away from 0 at q = 0 almost surely. Assumption 4 (ii)
ensures there is a jump of the regression surface at the splitting hyperplane, which is similar
to Assumption D3 of [35] and Assumption 4.(iii) of [22]. Assumption 4 (iii) controls the
probability of data near the cross regions of the two hyperplanes, whose sufficient condition
is presented in Section F of the SM ([33]). Assumption 4 (iv) requires that ∥X∥ and ε has a
finite moment of the order 8 around the hyperplanes.

The next theorem establishes the rates of convergence of β̂ and γ̂, followed by the con-
vergence rate of the proportions of misclassifications.

THEOREM 3.2. Under Assumptions 1–4, ∥β̂ − β0∥ = Op(1/
√
T ) and ∥γ̂ − γ0∥ =

Op(1/T ) for any γ̂ ∈ Ĝ.

COROLLARY 3.2. Under the conditions of Theorem 3.2, P{Z ∈ Rk(γ0)△ Rk(γ̂)} =
O(1/T ) for all k ∈ {1, · · · ,4}.

The theorem, whose proof is in Section B of the SM ([33]), shows that the regression co-
efficient estimator β̂ converges to β0 at the standard

√
T -rate, while the boundary parameter

estimator γ̂, despite having multiple solutions, converges to γ0 at the faster T -rate. The su-
per convergence rate attained by γ̂ is quite typical for the boundary parameter estimators, for
instance, the maximum likelihood estimator for the boundary parameter of uniform distribu-
tions, the LS estimator of models with a jump in the conditional density [8], the threshold
regression model [6] and the two-regime regression model with a fixed threshold effect [35].
An intuition for the fast convergence of γ̂ is that the discontinuity of the regression planes is
highly informative for the inference of γ. It is noted that in the shrinking threshold effect set-
ting β10−β20 = cT−α with c ̸= 0 and 0<α< 1

2 adopted by [16] and [22], the convergence
rate of γ̂ is slower at T 1−2α.
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To present the asymptotic distributions of β̂ and γ̂, we define for each k ∈ {1, · · · ,4},

Bk = E{XXT1(Z ∈Rk(γ0)} and Σk =B−1
k E

{
XXTε21(Z ∈Rk(γ0)

}
B−1
k .

Let qi,t =ZT

i,tγi0 and qi =ZT

i γi0 for i= 1 and 2. Denote by s(k)i = (−1)1(qi≤0, ∀Z∈Rk(γ0)) be

the sign of qi for Z = (ZT

1 ,Z
T

2 ) ∈Rk(γ0). For instance, s(1)1 = s
(1)
2 = 1 and s(2)1 =−1, s

(2)
2 =

1. If Rk(γ0) and Rh(γ0) are adjacent such that (k,h) ∈ S(i) for i= 1 or 2, let

ξ
(k,h)
t =

(
δT

kh,0XtX
T

t δkh,0 + 2XT

t δkh,0εt
)
1{Zt ∈Rk(γ0)∪Rh(γ0)}(3.3)

where δkh,0 = βk0−βh0. Let Z−1,i,t be the random vector of Zi,t excluding its first element.
Suppose (qi,Z−1,i, ξ

(k,h)) follows the stationary distribution of (qi,t,Z−1,i,t, ξ
(k,h)
t ). We de-

note Fqi|Z−1,i
(q|Z−1,i) and Fξ(k,h)|qi,Z−1,i

(ξ|qi,Z−1,i) as the conditional distributions of qi
on Z−1,i and ξ(k,h) on (qi,Z−1,i), respectively, and the corresponding conditional densities
are fqi|Z−1,i

(q|Z−1,i) and fξ(k,h)|qi,Z−1,i
(ξ|qi,Z−1,i), respectively. Let Z−1,i be the support

of the distribution of Z−1,i. The following is needed for the weak convergence of γ̂.

ASSUMPTION 5. (i) For i = 1 and 2, there exist constants δ3, c4 > 0 such that
P(|qi,t| ≤ δ3, |qi,t+j | ≤ δ3) ≤ c4 {P(|qi,t| ≤ δ3)}2 uniformly for t ≥ 1 and j ≥ 1; (ii) For
each z−1,i ∈ Z−1,i, the conditional density fqi|Z−1,i

(q|z−1,i) is continuous at q = 0 and
c4 ≤ fqi|Z−1,i

(0|z−1,i) ≤ c5 for some constants c4, c5 > 0; (iii) For each ξ ∈ R and
z−1,i ∈ Z−1,i, the conditional density fξ(k,h)|qi,Z−1,i

(ξ|qi,z−1,i) is continuous at qi = 0 and
fξ(k,h)|qi,Z−1,i

(ξ|0,z−1,i)≤ c6 for a constant c6 > 0; (iv) Z−1,i is a compact subset of Rdi−1.

Assumption 5 (i) is a non-clustering condition that states the probability of two points are
both located near the splitting hyperplane Hi0 is of a smaller order compared to that of just
one point is located near Hi0, which curbs the clustering of extreme events and is similar to
Condition C.4 of [7]. Assumption 5 (ii) and (iii) are on the conditional densities fqi|Z−1,i

and
fξ(k,h)|qi,Z−j,i

, respectively, which are used to characterize behaviors of the points near Hi0.
The compactness of Z−1,i is required by the limiting theory of point processes ([28] and [8]),
which may be attained by trimming Z−1,i,t or empirical quantile transformation.

The asymptotic distribution of γ̂ needs the following stochastic process

D(v) =
∑
i=1,2

∑
k,h∈S(i)

∞∑
ℓ=1

ξ
(k,h)
i,ℓ 1

{
J
(k,h)
i,ℓ + (Z

(k,h)
i,ℓ )Tv−1,i ≤ 0< J

(k,h)
i,ℓ

}
,(3.4)

for v = (vT

1 ,v
T

2 )
T ∈Rd1+d2 , where {(ξ(k,h)i,ℓ ,Z

(k,h)
i,ℓ )}∞ℓ=1 are independent copies of (ξ̄(k,h)i ,Z−1,i)

with ξ̄(k,h)i ∼ Fξ(k,h)|qi,Z−1,i
(ξ|0,Z−1,i), and J (k,h)

i,ℓ = J (k,h)
i,ℓ /fqi|Z−1,i

(0|Z(k,h)
i,ℓ ) with J (k,h)

i,ℓ =

s
(k)
i

∑ℓ
n=1 E

(k,h)
i,n and {E(k,h)

i,n }∞n=1 are independent unit exponential variables which are inde-

pendent of {(ξ(k,h)i,ℓ ,Z
(k,h)
i,ℓ )}∞ℓ=1. Moreover, {(ξ(k,h)i,ℓ ,Z

(k,h)
i,ℓ , J

(k,h)
i,ℓ )}∞ℓ=1 are mutually inde-

pendent with respect to i= 1,2 and (k,h) ∈ S(i).
Let GD = {vm : D(vm) ≤ D(v) if v ̸= vm} be the set of minimizers for D(v). Since

D(v) is a piece-wise constant random function, there are infinitely many elements in GD .
Such a phenomenon also appears in the threshold regression, where the minimizers of the
process, that is a special case of (3.4), are attained in an interval, whose left endpoint is
commonly used as a representative, which is not applicable to our case since GD is a poly-
hedron. As treated in [35], we use the centroid of GD as the representative. For any set A of
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d-dimensional vectors, the centroid of A is C(A) =
∫
v∈A vdv/

∫
v∈A dv, which can be geo-

metrically interpreted as the center of mass of the set A. Let γcD = C(GD) and γ̂c = C(Ĝ),
where Ĝ is the set for LS estimators for γ. The former will define the limit of γ̂c as shown
in Theorem 3.3. Numerically, γ̂c can be approximated by the average of N elements of Ĝ
for a sufficiently large N . The following theorem establishes the asymptotic distributions of√
T (β̂k −βk0) and T (γ̂c − γ0).

THEOREM 3.3 (Asymptotic distribution). Under Assumptions 1-5, we have (i)
√
T (β̂k−

βk0)
d−→N (0,Σk) for k = 1, · · · ,4 and T (γ̂c − γ0)

d−→ γcD; (ii) {
√
T (β̂k − βk0)}4k=1 and

{T (γ̂ci − γi0)}2i=1 are asymptotically independent.

REMARK 3.1. The limiting process D(v) is derived by the asymptotics of the point
process induced by {(ξ(k,h)t ,Z−1,i,t, T qi,t)}Tt=1. The process D(v) can be regarded as a mul-
tivariate compound Poisson process, whose jump sizes are {ξ(k,h)i,ℓ }∞ℓ=1 and jump locations

are determined by the counting measure induced by {(J (k,h)
i,ℓ ,Z

(k,h)
i,ℓ )}∞ℓ=1. Intuitively, this is

because D(v) largely relies on those points lying in a local neighborhood of the true splitting
hyperplanes, whose |qi,t| are on the order of O(T−1), which are rare events with their oc-
currences asymptotically governed by a Poisson process. In the case of univariate threshold
model where Zi = (Z,1)T and γi0 = (1, γi0)

T so that Z−1,i = 1 and qi = Z − γi0, it can be
seen that D(v) coincides with the compound Poisson process established in [6]. Theorem
3.3 also extends the result of [35] to accommodate the temporal-dependent data and multiple
splitting hyperplanes. The analysis is technically more involved than the existing literature of
the fixed effect threshold regression due to the challenge of the multivariate boundaries and
the dependence of the observations. To tackle these challenges, we exploit large sample the-
ory for the extreme values and point processes ([25] and [28]), as well as the epi-convergence
in distribution ([21]), which is more general than the classic uniform convergence in distribu-
tion and allows for more general discontinuity, as outlined in the SM ([33]). The techniques
used in the proof may be used to analyze the asymptotic of other extreme type statistics that
can be expressed as some functional of a multivariate point process with temporal-dependent
sequences.

REMARK 3.2. The asymptotic independence of T (γ̂c1−γ10) and T (γ̂c2−γ20) was shown
for the univaraite multiple-regime threshold model ([23]). Theorem 3.3 reveals that this can
be extended to multiple splitting hyperplanes, provided that the probability of data locating
at the crossing region of the two hyperplanes is negligible as reflected in Assumption 4 (iii).
As shown in the proof, the empirical point process induced by {(ξ(k,h)t ,Z−1,i,t, T qi,t), i =
1,2, (k,h) ∈ S(i)}Tt=1 is asymptotic Poisson, whose arrivals can be divided into different
segments, depending on whether they belong to the same pair (k,h) ∈ S(i) or not, where S(i)
is the set of index pairs of adjacent regions split by the i-th hyperplane. Hence, the limiting
Poisson process can be thinned into several asymptotic independent child processes, which
further implies the asymptotic independence of T (γ̂c1 −γ10) and T (γ̂c2 −γ20). As a building
block, we established a thinning theorem for Poisson processes for the α-mixing sequences,
which might be useful in its own right. The asymptotic independence of

√
T (β̂k − βk0) and

T (γ̂c−γ0) can be explained by the fact that the former is asymptotically a sum of terms with
each term being asymptotically negligible. Hence

√
T (β̂k − βk0) should not depend on the

stochastically bounded number of points near the hyperplanes that determine the distribution
of T (γ̂c − γ0) ([18]).
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It is also noted that the temporal dependence structure of the observed time series does not
show up in the asymptotic distributions of T (γ̂c − γ0) and

√
T (β̂k − βk0). That regarding√

T (β̂k − βk0) is due to the martingale difference condition E(εt|Ft−1) = 0 as far as the
asymptotic variance of β̂k is concerned, which is commonly the case in other related studies
[6, 23]. That on the T (γ̂c−γ0) is because the asymptotic distribution of γ̂c is determined by
the empirical point process induced by the points near the underlying splitting hyperplanes,
which satisfies Meyer’s condition ([25]) for rare events of mixing sequences and ensures the
limiting process being Poisson as in the case of independent observations.

4. Computation. The computation of the LSE for θ̂ by minimizing (3.2) is quite chal-
lenging due to the non-regularity of m(Wt,θ) that makes the most commonly used opti-
mization algorithms unworkable. We overcome the difficulty via the mixed integer quadratic
programming (MIQP), which optimizes a quadratic objective function with linear constraints
over points in polyhedral sets whose components can be both integer and continuous vari-
ables; see [4] and [3] for details. For the two-regime regression, [22] expressed the LS prob-
lem as an MIQP problem to improve the computation efficiency. The inclusion of the second
boundary in the current study brings challenges. If formulated directly using the approach of
[22], it would make the objective function quartic rather than quadratic. We will formulate a
MIQP for the two-boundary problem to facilitate the computation.

To make the notations compact, we define Ik,t = 1{Zt ∈ Rk(γ)} for any candidate γ =
(γT

1 ,γ
T

2 )
T and k = 1, · · · ,4. Let Xt,i be the i-th element of Xt and βk,i be the i-th element of

βk. It can be noted that the irregularity of MT (θ) in (3.2) is brought by the indicators {Ik,t}.
If we define ℓk,i,t = Ik,tβk,i for i= 1, · · · , p, then MT (θ) can be expressed as

(4.1) VT (ℓ) =
1

T

T∑
t=1

(
Yt −

4∑
k=1

p∑
i=1

Xt,iℓk,i,t

)2

which is quadratic with respect to ℓ= {ℓk,i,t : k = 1, · · · ,4; i= 1, · · · , p; t= 1, · · · , T}.
Since the constraints of an MIQP have to be linear, while ℓk,i,t = Ik,tβk,i is non-linear, it is

necessary to introduce linear constraints to ensure that {ℓk,i,t} have a one-to-one correspon-
dence to the unknown parameters {βk}4k=1 and{γj}2j=1. As βk belongs to a compact set,
there exist constants Li and Ui such that Li ≤ βk,i ≤ Ui. By imposing constraints

(4.2) Ik,tLi ≤ ℓk,i,t ≤ Ik,tUi and Li(1− Ik,t)≤ βk,i − ℓk,i,t ≤ Ui(1− Ik,t),

it can be verified that (4.2) holds if and only if ℓk,i,t = Ik,tβk,i under the condition that Ik,t ∈
{0,1}. That ℓk,i,t = Ik,tβk,i implies (4.2) is obvious. To appreciate the other way, note that if
Ik,t = 1, ℓk,i,t = βk,i; otherwise if Ik,t = 0, ℓk,i,t = 0. In either cases, ℓk,i,t = Ik,tβk,i.

The next goal is to relate Ik,t = 1{Zt ∈Rk(γ)} to the boundary coefficients {γj}2j=1. Let
gj,t = 1(ZT

j,tγj > 0). We first express gj,t by linear constraints in γj , so as to link Ik,t with
gj,t via linear inequalities. Let Mj,t =maxγ∈Γj

|ZT

j,tγ| which can be readily computed via
linear programming. Then,

(4.3) (gj,t − 1)(Mj,t + ϵ)<ZT

j,tγj ≤ gj,tMj,t

hold by the definition of gj,t, where ϵ > 0 is a small predetermined constant. On the other
hand, let gj,t be a binary variable that satisfies (4.3). Then, gj,t = 1 and the first inequality
implies that ZT

j,tγk > 0; and gj,t = 0 and the second inequality implies that ZT

j,tγ ≤ 0. Thus,
(4.3) are equivalent to gj,t = 1(ZT

j,tγj > 0).
Finally, we construct constraints which are linear in {gj,t}2j=1 and equivalent to Ik,t =

1{Zt ∈Rk(γ)}. Since each regime Rk(γ) can be written as Rk(γ) = {(z1,z2) : s(k)j zT

j γj >
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0, j = 1,2}, where s(k)j ∈ {−1,1} is the sign of zT

j γj for the points belonging in Rk(γ), we

can write Ik,t =
∏2
j=1 1(s

(k)
j ZT

j,tγj > 0), which can be linked to {gj,t}2j=1 via

Ik,t =

2∏
j=1

1
(
s
(k)
j ZT

j,tγj > 0
)
=

2∏
j=1

{
s
(k)
j gj,t + (1− s

(k)
j )/2

}
,(4.4)

where the first equality is by the definition of Ik,t, and the second equality can be directly
verified. Since the right-hand side of (4.4) is a product of two factors taking values in {0,1},
it can be shown that (4.4) is equivalent to the following linear constraints

Ik,t ≥
2∑
j=1

{
s
(k)
j gj,t + (1− s

(k)
j )/2

}
− 1 and Ik,t ≤ s

(k)
j gj,t + (1− s

(k)
j )/2.(4.5)

for j = 1 and 2 and k ∈ {1, · · · ,4}.
In summary, via the linear constraints (4.2), (4.3) and (4.5), we transform the original LS

problem (2.2) to a MIQP problem formulated as following.
Let g = {gj,t : j = 1,2, t = 1, · · · , T}, I = {Ik,t : k = 1, · · · ,4, t = 1, · · · , T} and ℓ =

{ℓk,i,t : k = 1, · · · ,4, i= 1, · · · , p, t= 1, · · · , T}. Solve the following problem:

(4.6) min
β,γ,g,I,ℓ

1

T

T∑
t=1

(
Yt −

4∑
k=1

p∑
i=1

Xt,iℓk,i,t

)2

(4.7)

subject to



βk ∈ B, γj ∈ Γj , gj,t ∈ {0,1}, Ik,t ∈ {0,1}, Li ≤ βk,i ≤ Ui,

(gj,t − 1)(Mj,t + ϵ)<ZT

j,tγj ≤ gj,tMj,t, Ik,tLi ≤ ℓk,i,t ≤ Ik,tUi,

Li(1− Ik,t)≤ βk,i − ℓk,i,t ≤ Ui(1− Ik,t),

Ik,t ≤ s
(k)
j gj,t + (1− s

(k)
j )/2, Ik,t ≥

2∑
j=1

{
s
(k)
j gj,t + (1− s

(k)
j )/2

}
− 1,

for k = 1, · · · ,4, j = 1,2, i= 1, · · · , p and t= 1, · · · , T.
The above optimization problem can be solved quite efficiently with modern mixed integer

optimization softwares such as GUROBI and CPLEX. The next theorem, whose proof is in
Section C of the SM ([33]), shows that the formulated MIQP is equivalent to the original LS
problem.

THEOREM 4.1. For any small ϵ > 0 in (4.7), let θ̃ = (γ̃T, β̃T)T be a solution of the MIQP
defined with (4.6) and (4.7), then MT (θ̂) =MT (θ̃) where θ̂ is a solution in (3.2).

Theorem 4.1 indicates that any γ̃ satisfying (4.6) and (4.7) is an element of Ĝ, the solution
set for the LS estimators for γ0. Since for any {gj,t} ∈ {0,1}2T , there are infinitely many
γj (j = 1,2) that satisfy the constraint in the second line of (4.7), we can output multiple
solutions {γ̃n = (γ̃T

n1, γ̃
T

n2)
T}Nn=1 of the above MIQP for a sufficiently large N , and use their

average as an approximation for the centroid γ̂c of the set Ĝ as advocated in [35]. We display
a scatter plot of the multiple solutions from a simulation experiment reported in Section H.2
of the SM ([33]), which appeared to be uniformly distributed. However, it requires further
investigation to understand the detailed mechanism regarding how the multiple elements of
Ĝ are produced by the MIQP solver.
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REMARK 4.1. It is noted that the above algorithm requires prior specifications of
(Li,Ui), the upper and lower bound for βk,i. In practice, we can first standardize {Xt}Tt=1

and specify a sufficient large parameter interval (Li,Ui) to ensure it contains the true
value. Alternatively, we can employ the data-driven method proposed in [3] that estimates
max{|Li|, |Ui|} via the convex quadratic optimization. Besides the proposed MIQP algo-
rithm, the MCMC-based method as used in [35] for the two-regime regression can also be
adapted to minimize the LS criterion MT (θ), which avoids the specification of the parame-
ter bounds but requires more intensive computations since it is a simulation-based method.
A comprehensive comparison between the MIQP and MCMC algorithms for segmented re-
gressions would require more work and we leave it to further study.

REMARK 4.2. As indicated in [22], the MIQP may be slow when the dimension of Xt

and the sample size T are large. As an alternative, we present a block coordinate descent
(BCD) algorithm for the four-regime model in Section C of the SM ([33]), which minimizes
the LS criterion with respect to β and γ iteratively. At each step, the update for γ given β is
via a mixed integer linear programming (MILP), which is easier to solve than the MIQP. The
update for β given γ is by linear regression in each candidate regime. Hence, the BCD is
computationally more efficient than the MIQP that jointly optimizes (γ,β). However, there
is no guarantee that the BCD converges to the global optimal solution without a consistent
initialization. Simulations to compare the two algorithms are presented in the SM ([33]),
which show that the BCD with proper initial values can produce close solutions to that of the
MIQP with significantly reduced running time.

5. Smoothed regression bootstrap. We now consider the statistical inference problems
for β0 and γ0. The inference for β0 is quite standard due to the asymptotic normality of β̂,
while that for the boundary coefficient γ0 is much more challenging since the asymptotic
distribution of T (γ̂c − γ0) has a much-involved form and is hard to simulate.

A natural idea for the inference of γ0 is to employ the bootstrap. However, as shown in
[31] and [34], neither the nonparametric, the residual, nor the wild bootstrap is consistent
in approximating the distribution of estimator for the change points in change point models
or the threshold in threshold regression models. The failure of these bootstrap methods can
be explained as follows. As pointed out in Remark 3.2, only the data around the boundary
hyperplanes is informative for the inference on γ0. Thus the bootstrap sampling distribution
P̂T , when conditional on the original data, must approximate the true distribution P0 in the
neighborhood of the true hyperplanes. For the identification of γ0, P0 must have a positive
probability on any local region around the underlying boundaries, as reflected in Assumption
2 (ii). However, conditional on the original data, the bootstrap distribution P̂T is discrete
under either the nonparametric, the residual, or the wild bootstrap, which fails to mirror P0.
As a remedy, we present a smoothed regression bootstrap method and prove its theoretical
validity.

Suppose that Y is generated according to the following segmented linear regression model
with heteroscedastic error

(5.1) Y =

4∑
k=1

XTβ01{Z ∈Rk(γ0)}+ σ0(X,Z) e,

where e has a continuous distribution and is independent of (X,Z) with E (e) = 0 and
E
(
e2
)
= 1, and σ20(X,Z) is a conditional variance function representing possible het-

eroskedasticity. Model (5.1) is a refinement of Model (2.1) with more detailed structure on
the residuals. If it is believed that the error is homogeneous within each region Rk(γ0) so
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that ε = σk1{Z ∈ Rk(γ0)}e for some σk > 0, as assumed in [34], then the nonparametric
estimation for σ0(x,z) is not required and σk can be estimated with the sample standard
deviation of the fitted residuals in the k-th region.

Let F0(x,z) be the distribution function of (X,Z), whose density function is f0(x,z).
We estimate F0(x,z) and σ0(x,z) nonparametrically with the kernel smoothing. Specifi-
cally, let K1(·) and K2(·) be a p-dimensional and a (d1 + d2)-dimensional kernel functions,
respectively. Let Gi(u) =

∫ u
−∞Ki(u)du for i = 1,2. The kernel smoothing estimator for

F0(x,z) is given by

F̃0(x,z) =
1

T

T∑
t=1

G1

(
Xt −x

h1

)
G2

(
Zt − z

h2

)
,

where h1 and h2 are smoothing bandwidths.
With the LS estimator (γ̂, β̂), the estimated residuals are ε̂t = Yt −

∑4
k=1X

Tβ̂1{Zt ∈
Rk(γ̂)}. The conditional variance function σ20(x,z) can be estimated via the local linear
approach proposed by [10]. For any given (x,z), the local linear estimator σ̃2(x,z) = α̂,
which is defined by

(α̂, η̂) = argmin
(α,η)

T∑
t=1

{
ε̂2t − α− ((Xt −x)T, (Zt − z)T)η

}2
K1

(
Xt −x

b1

)
K2

(
Zt − z

b2

)
,

where η ∈ Rp+d1+d2 , and b1 and b2 are smoothing bandwidths. Let êt = ε̂t/σ̃(Xt,Zt) and
ẽt = êt − ēT , where ēT =

∑T
t=1 êt/T . Denote Ĝ(e) as the empirical distribution of {ẽt}Tt=1.

We need the following conditions on the underlying stationary distribution and its density
functions, the kernel functions, and the smoothing bandwidths to facilitate the Bootstrap
procedure.

ASSUMPTION 6. (i) The stationary distribution F0 of (Xt,Zt) has a compact support
and is absolute continuous with density f0(x,z) which is bounded and infx,z f0(x,z)> 0.

(ii) The conditional variance function σ20(x,z) is bounded and infx,z σ
2
0(x,z)> 0.

(iii) The kernels K1(·) and K2(·) are symmetric density functions which are Lipshitz
continuous and have bounded supports. The smoothing bandwidths satisfy hi, bi → 0 for
i= 1 and 2, and T (logT )−1hp1h

d1+d2
2 →∞ and T (logT )−1bp1b

d1+d2
2 →∞ as T →∞.

Under Assumptions 1 and 6, it can be shown that supx,z ∥F̃0(x,z) − F0(x,z)∥
p−→ 0,

and supx,z ∥σ̃2(x,z)− σ20(x,z)∥
p−→ 0, following the uniform convergence results of kernel

density and regression estimators for mixing sequences, say [14]. In addition, the above as-
sumptions also ensure the uniform convergence of the density f̃0 of the kernel estimator F̃0 to
the true density function f0, which is required in establishing the consistency of the smoothed
regression bootstrap. If (X,Z) is of high dimensions we can also employ machine learning
methods that are adaptive to high dimensional features, such as the deep neural networks, to
estimate f0(x,z) and σ0(x,z), as long as their uniform convergence can be guaranteed.

The bootstrap procedure to approximate the distributions of {T (γ̂c − γ0),
√
T (β̂ − β0)}

is as follows.

Step 1: First, generate {(X∗
t ,Z

∗
t )}Tt=1 independently from F̃ (x,z) and {e∗t }Tt=1 indepen-

dently from Ĝ(e), respectively. Then, generate Y ∗
t =

∑4
k=1 (X

∗
t )

T β̂k1{Z∗
t ∈ Rk(γ̂

c)} +
σ̃(X∗

t ,Z
∗
t )e

∗
t to obtain bootstrap resample {(Y ∗

t ,X
∗
t ,Z

∗
t )}Tt=1.
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Step 2: Compute the LSEs based on {(Y ∗
t ,X

∗
t ,Z

∗
t )}Tt=1, where β̂∗ is the LSE for β0 and

{γ̂∗
i }Ni=1 are the LSEs for γ0 for a sufficiently large N . Let γ̂∗c =

∑N
i=1 γ̂

∗
i /N .

Step 3: Repeat the above two steps B times for a large positive integer B to obtain

{γ̂∗c
b }Bb=1 and {β̂∗

b}Bb=1, and use the empirical distribution of
{
T (γ̂∗c

b − γ̂c),
√
T (β̂∗

b − β̂)
}B
b=1

as an estimate of the distribution of {T (γ̂c − γ0) ,
√
T (β̂−β0)}.

As in the original LS problem, the LSEs for γ0 based on each bootstrap resample are
attained on a convex set Ĝ∗. Therefore, in Step 2 we approximate the centroid of Ĝ∗ by the
average of N elements in Ĝ∗. Denote the distribution of {T (γ̂c − γ0) ,

√
T (β̂−β0)} as LT

and the empirical distribution of
{
T (γ̂∗c

b − γ̂c),
√
T (β̂∗

b − β̂)
}B
b=1

as LT,B . The validity of
the smoothed regression bootstrap is established in the following theorem.

THEOREM 5.1. Suppose that Assumptions 1-6 hold. Then ρ (LT,B,LT )
p−→ 0 as B,T →

∞, for any metric ρ that metrizes weak convergence of distributions.

The proof of the theorem is in Section D of the SM ([33]) by first establishing sufficient
conditions for a consistent bootstrap scheme for approximating LT , followed by showing
that the smoothed regression bootstrap satisfies these conditions. With the above result, con-
fidence regions and hypothesis testings about γ0 and β0 can be readily conducted via the
empirical distribution of the smoothed bootstrap estimates LT,B .

REMARK 5.1. We exploit the parametric regression model in the bootstrap resampling,
under which the mixing-dependent structure of the observed data does not show up in the
asymptotic distributions as shown in Theorem 3.3. As discussed in [17], if one has a para-
metric model that reduces the data generating process to independence sampling, then the
parametric bootstrap has properties that are essentially the same as they are when the obser-
vations are independently distributed. Therefore, in the resampling procedure, the temporal
dependence of the original data is not necessary to be explicitly taken into account.

REMARK 5.2. In addition to the smoothed regression bootstrap, there are two alternative
methods which may be applicable for inference of γ0. One is the block subsampling method
proposed by [26], which was adopted by [13] in the threshold autoregressive models. Another
is the nonparametric posterior confident interval approach based on the Markov Chain Monte
Carlo (MCMC) adopted by [35] for inference on the two-regime regression model. Whether
these methods work for the current four-regime segmented regression with fixed boundary
effects and dependent data are interesting future research topics.

6. Degenerated models and model selection. Model (2.1) assumes that there are four
segments divided by two boundary hyperplanes where the adjacent regimes have distinct re-
gression coefficients. However, it is possible that the underlying regimes are degenerated with
less than four regimes. In this section, we show that the LS estimator (3.2) attains desirable
convergence properties even in the degenerated cases, and propose a model selection method
for choosing the underlying model.

Given the data sample {(Yt,Xt,Z1,t,Z2,t)}Tt=1 for Z1,t ∈Z1 and Z2,t ∈Z2, there are five
possible degenerated models as follows in addition to the four regime model (2.1).

(a.1). Three-regime model with non-intersected splitting hyperplanes:

(6.1) Yt =

3∑
k=1

XT

t βk01{Zt ∈Rk(γ0)}+ εt,
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where the two hyperplanes H1 and H2 have no intersection on Z1 × Z2. Without loss of
generality, we suppose that zT

1γ10 ≤ zT

2γ20 for all (z1,z2) ∈ (Z1 × Z2). Then, R1(γ0) =
{z : zT

1γ10 > 0},R2(γ0) = {z : zT

1γ10 ≤ 0,zT

2γ20 > 0} and R3(γ0) = {z : zT

2γ20 ≤ 0}. The
conventional multi-threshold models (e.g., [12] and [23]) correspond to this case.

(a.2). Three-regime regression model with intersected splitting hyperplanes:

(6.2) Yt =

3∑
k=1

XT

t βk01(Zt ∈Rk(γ0) + εt,

where R1(γ0) = {z : zT

i γj,0 > 0,zT

j γj,0 > 0},R2(γ0) = {z : zT

i γj,0 > 0,zT

j γj,0 ≤ 0} and
R3(γ0) = {z : zT

j γj,0 ≤ 0} for i ̸= j ∈ {1,2}. Geometrically, one side of the hyperplane
Hj : z

T

j γj,0 = 0 is split by Hi : z
T

i γi,0 = 0 that does not extend to the other side of Hj .
(b.1). Two-regime regression model with one splitting hyperplane:

(6.3) Yt =

2∑
k=1

XT

t βk01{Zt ∈Rk(γ0)}+ εt,

where (z,γ0) is either (z1,γ10) or (z2,γ20) and R1(γ0) = {z : zTγ0 > 0} and R2(γ0) =
{z : zTγ0 ≤ 0}, which are the same as the two-regime models of [22] and [35].

(b.2). Two-regime regression model with two splitting hyperplanes:

(6.4) Yt =

2∑
k=1

XT

t βk01{Zt ∈Rk(γ0)}+ εt,

where R1(γ0) = {z : zT

1γ10 > 0,zT

2γ20 > 0} and R2{γ0}=Z1 ×Z2 \R1(γ0).
(c). Global linear model:

(6.5) Yt =XT

t β0 + εt,

(A): four-regime

H1

H2

R1
(+,+)

R2
(−,+)

R3
(−,−)

R4
(+,−)

(B): three-regime (a.1)

H2 H1

R1
(+,+)

R2
(−,+)

R3
(−,−)

(C): three-regime (a.2)

H1

H2

R1
(+,+)

R2
(−,+)

R3
(−,−)∪(+,−)

(D): two-regime (b.1)

H1

R1
(+)

R2
(−)

(E): two-regime (b.2)

H1

H2

R1
(+,+)

R2
(−,+)∪(−,−)∪(+,−)

(F): global model

R1

Fig 1: Illustrations of segmented models with no more than four regimes. The signs of
(zT

1γ1,z
T

2γ2) for each region are indicated below the region names.
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Figure 1 illustrates the segmented models with no more than four regimes, which can be
expressed in a unified form

(6.6) Yt =

K0∑
k=1

XT

t βk01{Zt ∈Rk(γ0)}+ εt,

where the number of regimes 1≤K0 < 4 and the number of splitting hyperplanes L0 ≤ 2. In
particular, Rk(γ0) = Z1 ×Z2 for the global linear model (K0 = 1), the splitting coefficient
γ0 = γ10 or γ20 when L0 = 1, and γ0 = (γT

10,γ
T

20)
T when L0 = 2.

Let B̂ = {β̂k}4k=1 and Ĝ = {γ̂j}2j=1 be the LS estimators for the regression and the bound-
ary coefficients, respectively, obtained under the four-regime regression model (3.2). To mea-
sure the estimation accuracy of the four-regime algorithms for less than four regime models,
we need a distance of the true parameters of possibly degenerated models to the set of the LS
estimates under the four-regime model. To this end, we define a distance between a vector v
and a set of vectors V̂ = {v̂j}Jj=1 as d(v, V̂) = minj ∥v − v̂j∥2. The following theorem es-
tablishes the convergence of the LS estimators to the underlying parameters by showing that
the distance of the true parameters of the degenerated models to the set of the LSEs under the
four-regime model convergences to zero.

THEOREM 6.1. For Model (6.6) with K0 regimes and L0 splitting hyperplanes, where
1 ≤ K0 < 4 and 0 ≤ L0 ≤ 2, under Assumption 1 and Assumptions S2-S4 in the SM
([33]), which adapt Assumptions 3–4 to the degenerate model settings, then for each
βk0 with 1 ≤ k ≤ K0, d(βk0, B̂) = Op(1/

√
T ). If L0 = 1, then d(γ0, Ĝ) = Op(1/T ). If

L0 = 2, then d(γi0, Ĝ) = Op(1/T ) for each i = 1 and 2. Moreover, for any of the degen-
erated models with K0 < 4 regimes, there exists an index set Qk ⊂ {1, · · · ,4} such that
P{Z ∈Rk(γ0)△∪i∈Qk

Ri(γ̂)}=O(1/T ) for each 1≤ k ≤K0.

The theorem shows that under each of the degenerated models, the estimated boundaries
and the regression coefficients obtained under (3.2) of the four-regime model are consistent
to the true parameters in the sense of the diminishing distance between the true parameters
and the sets of the estimates. A remaining issue is to identify the true number of regimes so
that more precise segmented regression can be conducted. In the following, we introduce a
model selection procedure to attain the purpose.

The last part of Theorem 6.1 suggests that each true regime Rk(γ0) can either be consis-
tently estimated by some Ri(γ̂) if |Qk|= 1, which occurs when Rk(γ0) has two boundaries,
such as the first two regimes in Figure 1 (C), or there are some redundant estimated segments
in Rk(γ0), which happens if Rk(γ0) has a single boundary while an unnecessary estimated
hyperplane splits through Rk(γ0). If the latter case is true, then |Qk|> 1 and there exist two
adjacent estimated regimes Ri(γ̂) and Rh(γ̂) with i, h ∈ Qk, whose corresponding β̂i and
β̂h both consistently estimate βk0. Under such a case, merging Ri(γ̂) with Rh(γ̂) as one re-
gression regime will asymptotically not lead to an increased sum of squared residuals (SSR).
Otherwise, if the regression models on Ri(γ̂) and Rh(γ̂) are distinct, then merging these two
regimes will deteriorate the fitting performance. Such a property hints that the true model
with K0 < 4 can be selected via a backward elimination procedure.

Starting from the estimated four-regime model, we try recursively finding the best pairs
of adjacent regimes to be merged, under a criterion that the merging leads to the minimal
increase in the fitting errors, as defined in (6.7) below. Via conducting the optimal regime
merging recursively, we obtain four candidate regression models with the number of regimes
from K = 4 to K = 1. In the second step, the optimal number of regimes K is selected
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based on a criterion function (6.8) that combines a goodness-of-fit measure and a penalty for
over-segmentation.

For the initial model with four regimes, define

ST (4) =

T∑
t=1

[Yt −
K∑
k=1

XT

t β̂
(4)
k 1{Zt ∈ R̂(4)

k }]2

to be the sum of square residual (SSR) of the estimated four-regime model. For K = 4,3,2,
recursively define

D(K)

T (i, h)

= min
β∈B

T∑
t=1

[Yt −XT

t β1{Zt ∈ R̂(K)

i ∪ R̂(K)

h }]2 −
T∑
t=1

[Yt −
∑
k=i,h

XT

t β̂
(K)

k 1{Zt ∈ R̂(K)

k }]2

to be the increment in the SSR after merging R̂(K)

i and R̂(K)

h . Let AK be the pair of indices for
the adjacent segments of {R̂(K)

k }. We merge the segments R̂(K)

î
and R̂(K)

ĥ
if

(̂i, ĥ) = argmin
(i,h)∈AK

D(K)

T (i, h),(6.7)

followed by labeling the merged region and the remaining regions as {R̂(K−1)

k }K−1
k=1 , and we

denote the estimated regression coefficients to these K − 1 regimes by {β̂(K−1)

k }K−1
k=1 . Then,

define the SSR of the (K − 1)-segment submodel as

ST (K − 1) = ST (K) +D(K)

T (̂i, ĥ).

After obtaining the ST (K) for K = 2,3,4, we select the number of segments K̂ as

K̂ = argmin
1≤K≤4

{log(ST (K)

T
) +

λT
T
K}(6.8)

and output the estimated regimes and regression coefficients accordingly. The following the-
orem shows that the above selection algorithm has the model selection consistency.

THEOREM 6.2. Under the assumptions of Theorem 6.1, and λT → ∞, λT /T → 0 as
T →∞, then K̂ selected in (6.8) satisfies P(K̂ =K0)→ 1 as T →∞. In addition, P{R̂(K̂)

k △
Rk(γ0)}=O(1/T ) and ∥β̂(K̂)

k −βk0∥=Op(1/
√
T ) for any k ∈ {1, · · · ,K0}.

Theorem 6.2 indicates that with the probability approaching 1, the selected number of
regimes K̂ coincides with the true number K0, and as a by-product, the corresponding es-
timated regimes and the regression coefficients converge to their underlying counterparts. If
the regularization parameter is chosen as λT = logT , the (6.8) corresponds to the Bayesian
information criterion (BIC) [30].

REMARK 6.1. There are two existing approaches for carrying out the model selection
for the segmented models. One is by conducting pairwise linearity tests. Specifically, for
each adjacent regimes Ri(γ̂) and Rh(γ̂) under the four-regime model, one can test for the
hypothesis H0 : βi0 = βh0 via two-regime linearity tests, such as the score-type test of [35].
However, implementing such tests are computationally demanding, as the test statistics have
to be formulated via supremum or averaging over γ ∈ Γ, as γ is not identifiable under the null
hypothesis of no splitting within Ri(γ̂) ∪Rh(γ̂), which is known as the Davis problem [9].
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The other is the forward sequential fitting procedure for model selection of multi-threshold
regression models [12], which requires optimization for the splitting (boundary) coefficients
in each step. Compared with these two methods, the proposed model selection method has
two advantages. One is that it has quite readily computation without having to do the boot-
strap for the model selection; and the other is that we only need to estimate the splitting
coefficients for the initial four-segment model once and for all, as the submodels with fewer
regimes are selected via (6.7) without the need to conduct non-convex optimization as in the
forward sequential fitting procedure.

7. Simulation Study. In this section, we present results from simulation experiments
designed to investigate the performance of the proposed estimation and inference procedures
for the four-regime and the degenerated less than four regime models.

7.1. Estimation under the four-regime model. We first conducted simulations under the
four-regime model (2.1) such that the sample was generated according to

(7.1) Yt =

4∑
k=1

XT

t βk01k(Z
T

1,tγ10,Z
T

2,tγ20) + εt, t= 1, · · · , T,

where Xt = (X̃T

t ,1)
T with X̃t = (X1,t,X2,t,X3,t)

T and Zj,t = (Z̃T

j,t,1)
T with Z̃j,t =

(Zj,1,t,Zj,2,t)
T for j = 1,2. The noises were generated as εt = σ(Xt,Zt)et with σ(Xt,Zt) =

1 + 0.1X2
1,t + 0.1Z2

1,1,t and {et}Tt=1 being generated independently from the standard nor-
mal distribution and independent of {Xt,Zt}Tt=1. The regression coefficients of the four
regimes were β10 = (1,1,1,1)T,β20 = (−3,−2,−1,0),β30 = (0,1,3,−1)T and β40 =
(2,−1,0,2)T, and the two boundary coefficients γ10 = (1,−1,0)T and γ20 = (1,1,0)T, re-
spectively.

We considered three settings for Xt and Zj,t: independence, dependence with auto-
regressive (AR) and moving average (MA) models, respectively. Let Vt = (X̃T

t , Z̃
T

1,t, Z̃
T

2,t)
T.

For the independence setting, we generated {Vt}Tt=1
i.i.d.∼ N(0,ΣV ), where ΣV = (σij)i,j=1,··· ,7

with σii = 1 and σij = 0.1 if i ̸= j. For the AR dependence, Vt = ψVt−1 + ut, where

{ut}Tt=1
i.i.d.∼ N(0,ΣV ) and the dependence level ψ ∈ {0.2,0.4,0.8}. For the MA sce-

nario, we generated Vt = ψut−1 + ut, where {ut}Tt=1
i.i.d.∼ N(0,ΣV ) and ψ took val-

ues in {0.2,0.4,0.8}, respectively. The simulation experimented with four sample sizes:
{200,400,800,1600}, and the experiments were repeated 500 times for each sample size
and dependence setting.

Table 1 reports the average L2 estimation errors under the three temporal settings (inde-
pendence, AR(1) and MA(1)) and different dependence levels (ψ = 0.2,0.4,0.8) for β and
γ, respectively. It suggests that under the three dependence settings the estimation errors of γ̂
and β̂ both decreased as the sample size T was increased, indicating the convergence of the
estimation in both the regression and the splitting boundary coefficients. The table also sug-
gests that the magnitudes of the estimation errors were comparable across the three temporal
settings with different dependence levels, which support the result of Theorem 3.3 that the
temporal dependence in {Xt,Z1,t,Z2,t}Tt does not have leading order effects on the asymp-
totic variance of β̂. Moreover, Table 1 shows that the simulated averages of ∥γ0 − γ̂∥2 were
approximately halved once the sample size was doubled, while the reduction in ∥β0 − β̂∥2
was much slower, confirming the faster convergence rates of γ̂.
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TABLE 1
Empirical average estimation errors ∥γ0 − γ̂∥2 and ∥β0 − β̂∥2 (multiplied by 10), under the independence

(IND), auto-regressive (AR) and moving average (MA) settings with different dependence level ψ for
{Xt,Z1,t,Z2,t}Tt=1. The numbers inside the parentheses are the standard errors of the simulated averages.

IND AR MA

T
ψ = 0 ψ = 0.2 ψ = 0.4 ψ = 0.8 ψ = 0.2 ψ = 0.4 ψ = 0.8

γ̂ β̂ γ̂ β̂ γ̂ β̂ γ̂ β̂ γ̂ β̂ γ̂ β̂ γ̂ β̂

200
0.94 6.68 0.92 6.66 0.88 6.43 0.88 5.9 0.93 6.63 0.9 6.49 0.85 6.14

(0.59) (1.7) (0.58) (1.68) (0.6) (1.56) (0.61) (2.24) (0.56) (1.63) (0.54) (1.66) (0.52) (1.8)

400
0.45 4.55 0.45 4.55 0.45 4.4 0.43 3.98 0.44 4.46 0.43 4.38 0.43 4.06
(0.3) (1.1) (0.3) (1.11) (0.27) (1.17) (0.29) (1.53) (0.28) (1) (0.33) (1.07) (0.28) (1.21)

800
0.25 3.11 0.24 3.09 0.22 2.97 0.22 2.64 0.23 3.11 0.25 3.03 0.22 2.81

(0.16) (0.66) (0.15) (0.66) (0.14) (0.66) (0.14) (0.96) (0.14) (0.66) (0.16) (0.65) (0.15) (0.72)

1600
0.11 2.2 0.11 2.18 0.12 2.11 0.11 1.88 0.11 2.17 0.11 2.11 0.11 1.97

(0.07) (0.46) (0.07) (0.47) (0.08) (0.5) (0.07) (0.77) (0.07) (0.45) (0.07) (0.47) (0.07) (0.54)

7.2. Estimation under models with less than four regimes. We next investigated the
performances of the proposed estimation based on the four-regime model when the un-
derlying model was degenerated with less than four regimes. The data generating pro-
cess for {Xt,Z1,t,Z2,t, εt}Tt=1 was largely the independence setting used in Section
7.1. For the three-regime model (6.1) with non-intersected splitting hyperplanes, we let
γ10 = (1,0,−1)T,γ20 = (1,0,1)T and β10 = (1,1,1,1)T,β20 = (−3,−2,−1,0)T,β30 =
(0,1,3,−1)T. For the three-regime model (6.2) with intersected splitting hyperplanes, we
let γ10 = (1,1,0)T,γ20 = (1,−1,0)T while H10 does not extend to the positive side of
H20, and {βk0}3k=1 were the same as above. The parameters for the two-regime model
(6.3) with one splitting hyperplane were set as γ0 = (1,1,0)T, β10 = (1,1,1,1)T and
β20 = (−3,−2,−1,0)T. For the two-regime model (6.4) with two splitting hyperplanes,
we set the splitting coefficients as the same as the four-regime model (7.1), and R1(γ0) =
{z : zT

1γ10 > 0,zT

2γ20 > 0} and R2(γ0) = Z1 × Z2 \ R1(γ0), where the regression coeffi-
cients are β10 = (1,1,1,1)T and β20 = (−3,−2,−1,0)T, respectively. Finally, the regression
coefficients for the global linear model (6.5) were β0 = (1,1,1,1)T.

The simulation results are reported in Tables S2 of Section H.2 in the SM ([33]).
They show that for all the models with less than four regimes, the empirical averages of∑

i d(γi0, Ĝ) and
∑

k d(βk0, B̂) all diminished to 0 at similar rates as those in Table 1, where
Ĝ and B̂ are the sets of estimators obtained under the four-regime model for the splitting
and regression coefficients, respectively. These confirmed the results in Theorem 6.1. In ad-
dition, to evaluate the cost of not knowing the number of the underlying regimes, we also
estimated γ0 and β0 in the oracle setting, in which the true model forms were known. It was
found that estimation errors of γ0 under the four-regime model fitting were about the same
as that obtained under the oracle models, which was because the four-regime estimator can
efficiently use the data points located near the underlying boundaries as the oracle estimators
did. Moreover, as shown in Figures S2 and S3 of the SM ([33]), if the estimated four-regime
model produced redundant segments within a true regime, then the discrepancy between the
estimated regression coefficients on these redundant segments converged to 0, which verified
the idea used in the optimal merger strategy for the backward elimination procedure in the
model selection.

7.3. Model selection. We then conducted simulation experiments to examine the perfor-
mance of the proposed model selection method in Section 6. We considered the true number
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of regimes ranging from K0 = 4 to K0 = 1, where the parameters for the model with K0 = 4
were the same as Model (7.1) and those for K0 = 3 and K0 = 2 were Model 6.1 and Model
6.3, respectively, in Section 7.2. More simulation results for Model (6.2) and Model (6.5)
(K0 = 1) were reported in Table S3 of the SM.

TABLE 2
Empirical model selection results under 500 replications. The performances were evaluated by the average

estimated number of regimes K̂ , the discrepancy between the true regimes and the estimated regimes D(R, R̂)

and the L2 estimation error of regression coefficients D(B, B̂). The penalty parameter λT was chosen in
{5,5 log(T ),5 log2(T )}. The numbers inside the parentheses are the standard errors of the simulated averages.

Model T
λT = 5 λT = 5 log(T ) λT = 5 log2(T )

K̂ D(R, R̂) D(B, B̂) K̂ D(R, R̂) D(B, B̂) K̂ D(R, R̂) D(B, B̂)

Model (2.1)
(K0 = 4)

200
4.00 0.03 0.61 3.99 0.03 0.62 2.78 0.87 2.24

(0.00) (0.02) (0.12) (0.08) (0.04) (0.16) (0.87) (0.91) (1.05)

400
4.00 0.01 0.41 4.00 0.01 0.41 3.92 0.05 0.53

(0.00) (0.01) (0.08) (0.00) (0.01) (0.08) (0.27) (0.13) (0.43)

800
4.00 0.01 0.29 4.00 0.01 0.29 4.00 0.01 0.29

(0.00) (0.00) (0.05) (0.00) (0.00) (0.05) (0.00) (0.00) (0.05)

1600
4.00 0.00 0.20 4.00 0.00 0.20 4.00 0.00 0.20

(0.00) (0.00) (0.04) (0.00) (0.00) (0.04) (0.00) (0.00) (0.04)

Model (6.1)
(K0 = 3)

200
3.44 0.12 0.50 3.00 0.02 0.48 2.85 0.13 0.75

(0.50) (0.11) (0.11) (0.00) (0.02) (0.11) (0.38) (0.30) (0.69)

400
3.39 0.10 0.34 3.00 0.01 0.33 3.00 0.01 0.33

(0.49) (0.11) (0.07) (0.00) (0.01) (0.07) (0.00) (0.01) (0.07)

800
3.33 0.08 0.23 3.00 0.01 0.22 3.00 0.01 0.22

(0.47) (0.11) (0.05) (0.00) (0.00) (0.05) (0.00) (0.00) (0.05)

1600
3.33 0.08 0.16 3.00 0.00 0.16 3.00 0.00 0.16

(0.47) (0.11) (0.03) (0.00) (0.00) (0.03) (0.00) (0.00) (0.03)

Model (6.3)
(K0 = 2)

200
3.38 0.14 0.35 2.03 0.01 0.30 2.00 0.01 0.30

(0.59) (0.11) (0.10) (0.17) (0.01) (0.08) (0.00) (0.01) (0.08)

400
3.54 0.13 0.24 2.01 0.01 0.20 2.00 0.01 0.20

(0.51) (0.11) (0.07) (0.08) (0.01) (0.05) (0.00) (0.00) (0.05)

800
3.53 0.12 0.16 2.00 0.00 0.14 2.00 0.00 0.14

(0.53) (0.11) (0.04) (0.06) (0.00) (0.04) (0.00) (0.00) (0.04)

1600
3.50 0.13 0.12 2.00 0.00 0.10 2.00 0.00 0.10

(0.55) (0.12) (0.03) (0.00) (0.00) (0.03) (0.00) (0.00) (0.03)

Table 2 reports three model selection performance measures for the simulation, namely (i)
the estimated number of regimes K̂ , (ii) the discrepancy between the true regimes and the
estimated regimes measured by

D(R, R̂) =

K0∑
k=1

min
1≤h≤K̂

{
T−1

T∑
t=1

|1{Zt ∈Rk(γ0)} − 1{Zt ∈Rh(γ̂)}|

}
,

where R= {Rk(γ)}K0

k=1 and R̂= {Rk(γ̂)}K̂k=1, and (iii) the L2 estimation error of regression
coefficients, quantified by D(B, B̂) =

∑K0

k=1min1≤h≤K̂ ∥βk0 − β̂h∥. To evaluate the impact
of the penalty parameter λT in (6.8), we presented the results under three different choices:
λT = 5,5 log(T ) and 5 log2(T ).
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Table 2 shows that, for the constant penalty λT = 5, although the estimated number of
regimes K̂ was consistent under K0 = 4, it tended to select overly segmented models when
K0 < 4. Both λT = 5 log(T ) and 5 log2(T ) led to consistent estimated K̂ for all models,
which confirmed the assertion in Theorem 6.2 that λT satisfying λT →∞ and λT /T → 0
leads to model selection consistency. It was also noted that while the last two penalties were
consistent, for smaller sample sizes, the selection performance with λT = 5 log(T ) was su-
perior to that with λT = 5 log2(T ) when K0 ≥ 3, while the latter penalty had better selection
accuracy when K ≤ 2. Such a phenomenon may be understood since a larger penalty tends
to encourage under-segmentations. In addition, both D(R, R̂) and D(B, B̂) diminished to 0

when K̂ was correctly selected, indicating that the model specification procedure was able
to not only consistently identify K0, but also led to consistent estimates of regimes and the
corresponding regression coefficients, as shown in Theorem 6.2.

7.4. Smoothed regression bootstrap. We now report simulation results designed to eval-
uate the empirical performance of the smoothed regression bootstrap.

The data generating model for {Yt,Xt,Z1,t,Z2,t}Tt=1 was the same as the independent set-
ting in Section 7.1, but (X̃T

t , Z̃
T

1,t, Z̃
T

2,t)
T was truncated over a 7-dimensional region [−2,2]7

to ensure the distribution of the covariates was compactly supported as required in Assump-
tion 6. The product Gaussian kernel was used as the kernel function with the smoothing
bandwidths hi and bi(i= 1,2) for F̃0(x,z) and σ̃2(x,z) were chosen by the cross-validation
method ([10]). As a comparison, we also conducted the wild bootstrap procedure ([24]),
which is a commonly used bootstrap method in regression. Different from the smoothed
regression bootstrap, the wild bootstrap does not resample the covariates and the resampled
residuals ε∗t = d∗t ε̂t, where ε̂t was the estimated residual and d∗t followed a two-point distribu-
tion. Both the smoothed regression bootstrap and the wild bootstrap were based on B = 500
resamples for each simulation run. As there are infinitely many solutions for γ̂ from the
MIQP algorithm, for each bootstrap resample, we outputted N = 100 solutions for the LSE
of γ0 and used their average as γ̂∗c

b .

TABLE 3
Empirical coverage probabilities and widths (×100 in parentheses) of the 95% confidence intervals for five
projected parameters {γ̃Tdi}5i=1 obtained with the smoothed regression bootstrap (Smooth) and the wild

bootstrap (Wild) based on 500 resamples.

T
d1 d2 d3 d4 d5

Smooth Wild Smooth Wild Smooth Wild Smooth Wild Smooth Wild

200
0.92 0.87 0.97 0.87 0.93 0.90 0.93 0.83 0.96 0.86

(6.76) (3.57) (6.91) (3.91) (5.78) (4.02) (6.20) (3.44) (6.86) (3.56)

400
0.95 0.86 0.94 0.83 0.97 0.86 0.94 0.88 0.97 0.85

(3.31) (1.69) (3.57) (1.89) (2.56) (1.94) (3.37) (1.73) (3.69) (1.75)

800
0.93 0.85 0.96 0.87 0.94 0.88 0.96 0.88 0.96 0.87

(1.70) (0.83) (1.76) (0.99) (1.68) (1.00) (1.72) (0.86) (1.80) (0.76)

1600
0.95 0.83 0.94 0.88 0.95 0.90 0.96 0.84 0.94 0.85

(0.81) (0.40) (0.86) (0.51) (0.89) (0.53) (0.85) (0.41) (0.79) (0.42)

To evaluate the quality of the two bootstrap schemes, we constructed 95% confidence in-
tervals (CIs) for γ̃0 = (γ ′

−1,10,γ
′
−1,20)

T = (−1,0,1,0)T projected on five directions {di}5i=1

where di = ei for i= 1, . . . ,4 and d5 =
∑4

i=1 di/2, and ei = (ei1, · · · , ei4)T with eii = 1 and
eij = 0 if j ̸= i. Table 3 reports the coverage probabilities and widths of the nominal 95% CIs
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for γ̃T

0di based on the smoothed regression bootstrap and the wild bootstrap, respectively. It
is shown that the smoothed regression bootstrap had satisfactory coverage as its empirical
coverage levels were quite close to the nominal 95% level under large sample sizes for all the
five projection directions. This verified the consistency of the proposed bootstrap procedure
in Theorem 5.1. On the other hand, the wild bootstrap had substantial under-coverage, and
its coverage was not improved with the increases of the sample sizes. The comparison be-
tween the two bootstrap schemes reveals that for the inference of γ0, it is crucial to conduct
resampling from a smoothed distribution, as advocated in Section 5.

8. Case Study. Air quality is naturally affected by meteorological regimes as the lat-
ter defines the atmospheric dispersion conditions. We demonstrate here that the four-regime
regression model is well suited for PM2.5 modeling in Beijing.

We considered hourly PM2.5 data from Wanshouxigong site in central Beijing with the
meteorological data from the nearest weather observation site being used. The study period
was from December 1, 2018 to November 30, 2019, which encompassed four seasons. The
meteorological data included the air temperature (TEMP), dew point temperature (DEWP),
surface air pressure (PRES), the cumulative wind speed (IWS) at a direction and wind di-
rection (WD). Cumulative rainfall (RAIN) was included in summer, however not in the other
three seasons due to a lack of it. The categorical wind direction (WD) took five values: North-
westerly (NW), Northeasterly (NE), Southwesterly (SW), Southeasterly (SE) and calm and
variable (CV). We also used the boundary layer height (BLH), which defines the vertical dis-
persion property, from European Centre for Medium-Range Weather Forecasts (ECMWF).

To investigate the in-sample and out-of-sample performances, the data were divided to the
training and testing sets, where the testing sets consisted of the data from the 11-th to the
20-th days of a month and the training sets included the rest of the data in the month. PM2.5

was regressed on covariates TEMP, DEWP, PRES, log(BLH), IWS, WD as well as the PM2.5

at the previous hour (Lag PM2.5). For the wind direction, NW, NE, SW and SE were set as
dummy covariates with the CV as the baseline.

Along with the proposed four-regime model (4-REG), the global linear regression (GLR),
the two-regime model (2-REG) [22] and [35], the linear regression tree (LRT) ([37]) and the
multivariate adaptive regression splines (MARS) [11] were also considered. For 2-REG and
4-REG, the splitting boundaries were determined by TEMP, DEWP, log(BLH), IWS, and
the four wind directions NE, NW, SE and SW with the coefficients standardized so that the
intercept term being 1.

Fig 2: Mean squared errors (MSE) for PM2.5 on the training (red) and testing (green) sets for each sea-
son of five models, including global linear regression (GLR), two-regime model (2-REG), four-regime
model (4-REG), linear regression tree (LRT) and multivariate adaptive regression splines (MARS),
with model ranks (in increasing order of the MSEs) marked on top of the bars.
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Figure 2 summarizes the in-sample and out-of-sample MSEs of these models in each sea-
son. Within the training sets, LRT or MARS achieved the lowest MSE among the five models
with the average rank being 1.75 and 2, respectively. Here, rank 1 indicates the best perfor-
mance. The average rank of the 4-REG in the training groups was 2.5, while those of the
2-REG and GLR ranked the lowest in all seasons. However, LRT and MARS had the highest
prediction MSEs on the testing sets, even worse than the benchmark GLR for all seasons,
indicating they were severely over-fitted. The segmented linear models, 4-REG and 2-REG,
were the best two in terms of out-of-sample performances, with the 4-REG achieving the
lowest predictive errors consistently in all seasons.

The estimated 4-regimes models in the spring, summer and fall seasons all had three
regimes, as the fourth estimated regime had zero sample size in the three seasons. A fur-
ther examination suggested that the two estimated boundaries had no intersections over the
sample regions, which corresponded to Model (6.1) and reflected the fact that the proposed
LS criterion based on the four-regime model may be able to produce a three-regime model
if the latter offers better fit. The winter had four estimated regimes. The estimated regression
coefficients and their 95% confidence intervals are given in Figure S4 of the SM ([33]).

TABLE 4
Estimated coefficients of the splitting boundaries and cos of the angle ϕ between the two boundaries. The

coefficients were normalized such that the coefficients of the intercept terms were 1. All the covariates were
standardized such that their sample means were 0 and standard deviations were 1 in each season.

Season γ TEMP DEWP IWS log(BLH) NE NW SE SW cosϕ

Spring
1 1.3 -2.5 -0.0 -0.4 0.9 0.3 0.1 0.0

0.78
2 0.4 -0.5 -0.1 -0.1 0.6 0.6 0.1 0.3

Summer
1 1.0 5.5 -12.9 -0.0 -12.7 -15.0 -8.9 -9.0

0.75
2 0.4 0.2 -0.2 0.0 -0.7 -0.7 -0.7 -0.7

Fall
1 0.7 -1.0 0.3 -0.1 0.5 -0.0 0.3 0.0

0.65
2 -0.5 1.6 -1.0 0.0 0.1 -1.6 -1.3 -0.1

Winter
1 0.2 -0.5 0.6 -0.2 0.2 0.4 0.4 -0.4

0.45
2 0.0 -0.6 0.2 -0.4 1.2 1.4 0.3 1.0

Table 4 reports the estimated coefficients of the two splitting boundaries for each season as
well as the cosine of the dihedral angle (denoted as ϕ) between the two boundary hyperplanes.
It can be seen that cosϕ for the first three seasons were relatively larger than that in winter,
which explains why the boundary hyperplanes of these three seasons were non-intersected.
Table 4 indicates that the DEWP and the wind-related variables were the most influential in
determining the slopes of the estimated boundaries due to their absolute coefficient values as
the γ was normalized. This reveals an attraction of the proposed regime-splitting mechanism
in that the splitting boundaries are determined empirically by multivariate covariates, which
contrasts to the threshold regression where the boundary variable has to be user-specified.

Figure 3 displays summary statistics of PM2.5 and the meteorological variables under the
three regimes in the spring and fall seasons, as well as the rose plots for the wind direc-
tions and the average integrated wind speed (IWS). It shows that the segmented regression
picked up three meteorological regimes on PM2.5 where Regime 1 corresponded to the pol-
lution state with high DEWP and high proportion of Calm and Variable wind (CV) which are
known to encourage the secondary generation of PM2.5 and unfavorable static atmospheric
diffusion, Regime 2 was a transitional state between the clean and high pollution states with
reduced DEWP and CV, and Regime 3 was a cleaning state dominated by the northerly wind
which brought cleaner and cooler air from the north. Results of the other two seasons and
analysis are provided in Figure S5 of the SM.
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Fig 3: Bar and rose plots for key variables under each estimated regimes in spring and fall 2019. The
height of the bars indicate the sample means with imposed line segments indicating twice of the sample
deviations above and below the means. The rose plots display the distribution of wind directions (width
of angles) and average speed (length of radius). Sample sizes of each regime is reported in the subtitle.

(a) Spring

(b) Fall

9. Discussion. This paper develops a statistical inference approach for four-regimes seg-
mented linear models, which broadens the scope of the two-regime models of [22] and [35],
and can attains valid inference for degenerated models with less than four regimes. The pro-
posed segmented model is shown to produce better in-sample and out-sample results for the
air quality data in Beijing and produced regime-splitting results which had clear atmospheric
physics interpretation.

There are two possible extensions which may be considered in future research. One is to
allow endogeneity which may be encountered in economic and social behavior applications.
If Xt is endogenous and Zt is exogenous, β0 and γ0 can be consistently estimated with in-
strument variables Vt and the two-stage least squares estimation (2SLS) by first regressing
Xt on Vt, and then using the fitted X̂t to substitute Xt in the four-regime model. The LS
estimation via the MIQP and the inference methods for the four-regime model presented in
this paper is still applicable. However, the 2SLS is no longer working if Zt is endogenous
as discussed in [36], who proposed a conditioning and re-centering approach which might
be extended to the four-regime model. Specifically, let g(Xt,Zt) =XT

t β10 +E(εt|Xt,Zt),
δk0 = βk0 − β10 for k ̸= 1, and et = εt − E(εt|Xt,Zt), then Model (2.1) can be written as
Yt = g(Xt,Zt) +

∑3
k=1X

T

t δk01{Zt ∈Rk(γ0)}+ et, which is a partially linear segmented
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model, where γ0 is identifiable without instrument variables. However, the integrated differ-
ence kernel estimator used in [36] was designed for univariate threshold, and it is interesting
to see how it can be extended to multivariate γ0. Alternatively, one may consider estimating
γ0 via the mixed integer programming with the nonlinear E(εt|Xt,Zt) part approximated via
sieve functions. How to solve these issues in the context of the four-regime model requires
further investigation.

Another extension is for segmented models with L > 2 splitting hyperplanes. In general,
the L splitting hyperplanes in Rd can lead to as many as KL =

∑min(L,d)
i=0

(
L
i

)
segments, as

shown in Section G of the SM ([33]). It is clear that the investigations in this study for the two
boundary case provide vital understanding to the general cases. For example, if we consider
an extension to the case of having three hyperplanes in Rd, we can fit a segmented model
with K =

∑min(3,d)
i=0

(
3
i

)
regimes by the least squares estimation, whose criterion function

would have the same form as (3.1). The backward selection procedure in Section 6 can be
employed to specify the optimal number of regimes, and the smoothed regression bootstrap
is still able to facilitate the inference for γ0 and β0. Furthermore, the proof for the asymp-
totic distributions of the least squares estimators can be modified to suit the more general
segmented models. The main challenge for the general cases is the complicated model form
and demanding computation costs caused by the increase of L, requiring efforts in further
studies. On the other hand, as KL grows exponentially with respect to L if d > L and poly-
nomially if d≤ L, there would be little need to consider segmented models with large L and
d as the nonparametric local models (regression trees, etc) may be better suited.
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SUPPLEMENTARY MATERIAL

Supplement to “Statistical Inference on Four-Regime Segmented Regression Models”
In the supplementary material, we present technical details, proofs and additional results of
the simulations and the case study.
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Notations. Throughout the supplementary material, we use c1, c2,C1,C2, · · · to denote
generic finite positive constants, which may differ from line to line. We use 1(A) as the in-
dicator function of an event A. For any vector v = (v1, · · · , vd)T, let ‖v‖ = (

∑d
i=1 v

2
i )

1/2

be its L2-norm. For any r > 0, we define N (v0; r) = {v : ‖v− v0‖ ≤ r}. Denote by v−1

as the sub-vector of v excluding its first element, i.e., v−1 = (v2, · · · , vd)T. For any two
sets A,B, we let A \ B = A ∩ Bc, where Bc is the complement of B, and A 4 B =
(A \B) ∪ (B \A). The empirical measure ET (·) denotes the sample average of a sequence
of random elements with T observations, i.e., ET (Xt) = T−1

∑T
t=1Xt. We also denote

GT (·) =
√
T{ET (·)−E(·)}.

For the four-regime regression model

Yt =

4∑
k=1

XT

t βk1{Zt ∈Rk(γ)}+ εt,

we define the indicator functions for the t-th observation on the k-th regions as

1
(k)
t (γ) := 1{Zt ∈Rk(γ)} for k ∈ {1, · · · ,4};

and for l= 1 and 2, let

1l,t(γ) := 1(ZT

l,tγ > 0) and 1l,t(γ, γ̃) := 1(ZT

l,tγ ≤ 0<ZT

l,tγ̃). (1)

For each 1≤ k ≤ 4, that z = (z1,z2) ∈Rk(γ) or not depends on the signs of zT

1γ1 and zT

2γ2.
As results, for each l= 1 and 2 and 1≤ k ≤ 4, we denote

s
(k)
l = sign (zT

l γl) , for (z1,z2) ∈Rk(γ), (2)

1
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for each l ∈ {1,2} and k ∈ {1, · · · ,4}, which is well-defined since any z ∈ Rk(γ) has the
same sign (zTγl). Specifically, in the four-regime model, we have s(1)1 = s

(1)
2 = 1; s

(2)
1 =

−1, s
(2)
2 = 1; s

(3)
1 = s

(3)
2 =−1; and s(4)1 = 1, s

(4)
2 =−1. We now define the pairs of adjacent

sub-regions. For the l-th splitting hyperplane, we let

S(l) =
{
(j, k) : s

(j)
l 6= s

(k)
l and s

(j)
i = s

(k)
i if i 6= l

}
, (3)

that is, {zT

l γl = 0} is the only splitting hyperplane that Rj(γ) and Rk(γ) are on opposite
directions of it. Specifically, in the four-regime model, S(1) = {(1,2), (3,4), (2,1), (4,3)}
and S(2) = {(1,4), (2,3), (4,1), (3,2)}. Let

m(Wt,θ) = {Yt −
4∑

k=1

XT

t βk1k(Z
T

1,tγ1,Z
T

2,tγ2)}2.

We denote by MT (θ) = ET {m(Wt,θ)} and M(θ) = E{m(Wt,θ)} for any θ ∈Θ.

APPENDIX A: AUXILIARY LEMMAS

In this section, we provide some useful lemmas that will be constantly used in the proofs
of main results.

A.1. Lemmas for moment inequalities and empirical processes. The following
lemma establishes a uniform law of large numbers for the segmented linear models with
an α-mixing sequence of observations.

LEMMA A.1 (Glivenko-Cantelli). Let γ = (γT

1 ,γ
T

2 )
T ∈

∏2
l=1Γl. Let Ut = U(Wt) be a

function of Wt with suptE‖Ut‖4 <∞. Then under the α-mixing condition in Assumption 1,
for each k ∈ {1, · · · ,4} we have

sup
γ∈

∏2
l=1 Γl

|ET {Ut1{Zt ∈Rk(γ)}} −E{Ut1{Zt ∈Rk(γ)}}|= op(1).

REMARK A.1. In this lemma, the geometric decaying rate of the α-mixing coefficient in
Assumption 1 can be relaxed as a polynomial rate satisfying

∑∞
t=1α(t)

1− 2

r <∞ for some
r > 2.

PROOF. Let Fl = {zl : zT

l γ < 0,γ ∈ Γl}. By Example 2.6.1 of van der Vaart and Wellner
(1996) we know that the VC-dimension of Fl is VC(Fl) = dl, where dl is the dimension of zl
for l= 1 and 2. Let Rk = {Rk(γ),γ ∈

∏2
l=1Γl}. Then, Rk consists of intersection of sets in

{Fl, l ∈ {1,2}} or their complements. Then, according to Lemma 2.6.17 of van der Vaart and
Wellner (1996), Rk is a VC-class which can pick out at most O(n

∑2
l=1 dl−2) subsets of any

given set {xi}ni=1 for xi ∈ R
∑2

l=1 dl . Hence, by Lemma 2.6.18 of van der Vaart and Wellner
(1996), the function class Gk = {g(u,z) = u1(z ∈ R),R ∈ Rk} is a VC-subgraph function
class, which implies that Gk has a finite uniform covering numbers.

For any fixed γ ∈
∏2
l=1Γl, by the ergodic thoeorem for the α-mixing processes (see Theo-

rem 10.2.1 of Doob, 1953), we have |ET {Ut1{Zt ∈Rk(γ)}} −E{Ut1{Zt ∈Rk(γ)}}|=
op(1) for each k ∈ [4]. Because the covering number of Gk is finite, using the same argu-
ments as in Theorem 2.4.1 of van der Vaart and Wellner (1996), the uniform weak law of
large numbers is established.

The next lemma provides useful moment inequalities about perturbations of γ0 around its
neighborhoods.
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LEMMA A.2. Suppose that U is a random variable that satisfiesM0 < E(U |ZT

ℓ γ = 0)<
M1 almost surely with some constants M0,M1 > 0 for any ℓ ∈ {1,2}, where γ ∈N (γℓ0; δ)
for some δ > 0.

(i) Under Assumption 3.(ii), there exist constants c1, δ1 > 0, such that if γ1,γ2 ∈
N (γℓ0; δ1), then

E{U |1ℓ(γ1)− 1ℓ(γ2)|} ≤ c1‖γ1 − γ2‖. (A.1)

(ii) Under Assumption 4.(i), there exist constants c2, δ2 > 0, such that if γ1,γ2 ∈
N (γℓ0; δ2), then

E{U1(Zℓ ∈R) |1ℓ(γℓ0)− 1ℓ(γℓ)|} ≥ c2‖γℓ0 − γℓ‖. (A.2)

where R=Rk(γ0)∪Rh(γ0) with (k,h) ∈ S(ℓ).
(iii) Under Assumption 4.(iii), there exist constants c3, δ3 > 0, such that if γ1,γ2 ∈

N (γ10; δ3) and γ3,γ4 ∈N (γ20; δ3), then

E{U |11(γ1)− 11(γ2)| | |12(γ3)− 12(γ4)|} ≤ c3‖γ1 − γ2‖‖γ3 − γ4‖. (A.3)

PROOF. (i) Let δ1 = min(δ, δ0), where δ0 is specified in Assumption 3 (ii) and δ is in
the assumption of Lemma A.2 (i). Denote N1ℓ =N (γℓ0; δ1). Since for any γ1,γ2 ∈N1ℓ, the
event |1ℓ(γ1)− 1ℓ(γ2)|> 0 implies that there exists γ3 = λγ1 + (1− λ)γ2 with λ ∈ (0,1)
such that ZT

ℓ γ3 = 0, we have

E{U |1ℓ(γ1)− 1ℓ(γ2)|} ≤ EZℓ

{
sup
γ3∈N1ℓ

E(U |ZT

ℓ γ3 = 0) |1ℓ(γ1)− 1ℓ(γ2)|

}
≤M1E (|1ℓ(γ1)− 1ℓ(γ2)|)≤ c1M1‖γ1 − γ2‖,

where the last inequality is due to Assumption 3.(ii), which verifies (A.1).
(ii) For each ℓ = 1 and 2, let N2ℓ = N (γℓ0; δ). Let MR be a positive constant such that

PR = P(Zℓ ∈ AR) > 0, where AR = {‖Zℓ‖ ≤MR,Zℓ ∈ R}. Then, for any γℓ ∈ N2ℓ, we
have

E{U1(Zℓ ∈R) |1ℓ(γℓ)− 1ℓ(γℓ0)|}

=EZℓ
[E(U |Zℓ){|1ℓ(γℓ)− 1ℓ(γℓ0)|1(Zℓ ∈R)}]

≥EZℓ
[ inf
γ3∈N2ℓ

E(U |ZT

ℓ γ3 = 0){|1ℓ(γℓ)− 1ℓ(γℓ0)|1(Zℓ ∈R)}]

≥M0E{|1ℓ(γℓ)− 1ℓ(γℓ0)|1(Zℓ ∈R)} ,

≥M0E{|1ℓ(γℓ)− 1ℓ(γℓ0)|1(‖Zℓ‖ ≤MR,Zℓ ∈R)}

=M0E{1(|qℓ|< |ZT

ℓ∆γℓ|)1(‖Zℓ‖ ≤MR,Zℓ ∈R)}

=M0PRE{1(|qℓ|< |ZT

ℓ∆γℓ|) |Zℓ ∈AR} , (A.4)

where ∆γℓ = γℓ−γℓ0. Take δ3 =min(δ2/MR, δ), where δ2 is specified in Assumption 4.(i).
Then, for any γℓ ∈N (γℓ0; δ2), we have |ZT

ℓ∆γℓ| ≤ δ2. Since the first elements of γℓ0 and γℓ
are 1, ZT

ℓ∆γℓ =Z
T

−1,ℓ∆γ−1,ℓ. Hence, by Assumption 4.(i),

E
{
1(|qℓ|< |ZT

−1,ℓ∆γ−1,ℓ|)|Zℓ ∈AR

}
≥c2E

(
|ZT

−1,ℓ∆γ−1,ℓ|| |Zℓ ∈AR

)
≥c2‖∆γ−1,ℓ‖ inf

∥γ−1∥=1
E
(
|ZT

−1,ℓγ−1| |Zℓ ∈AR

)
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=c2‖γℓ0 − γℓ‖ inf
∥γ−1∥=1

E
(
|ZT

−1,ℓγ−1| |Zℓ ∈AR

)
. (A.5)

We next show that inf∥γ−1∥=1E
(
|ZT

−1,ℓγ−1| |Zℓ ∈AR

)
> 0. If otherwise, there exists

some γ∗ such that ‖γ−1,∗‖ = 1 and E
(
|ZT

−1,ℓγ−1,∗|| |Z−1,ℓ ∈AR

)
= 0. This means

that P(|ZT

−1,ℓγ−1,∗| = 0|Zℓ ∈ AR) = 1, which further implies that P(|ZT

−1ℓγ−1,∗| = 0) ≥
P(|ZT

−1,ℓγ−1,∗| = 0|Zℓ ∈ AR)P(Zℓ ∈ AR) = PR, and contradicts with Assumption 3.(ii).
Therefore, it must hold that

inf
∥γ−1∥=1

E
(
|ZT

−1,ℓγ−1| |Zℓ ∈AR

)
> 0. (A.6)

Combining (A.4)–(A.6) completes the proof of Part (ii) of Lemma A.2.
(iii) It follows from similar arguments as in (i) and thus is omitted.

The following moment inequalities are for partial sums, built upon Lemma A.2 and
Rosenthal-type moment inequalities for mixing sequences provided in Peligrad (1982).

LEMMA A.3 (Moment inequalities). Let Ut = U(Wt) be a function of Wt. Under As-
sumptions 1.(i), 3.(ii) and 4.(iii), and suppose that supγ∈N (γl0;δl)E(|Ut|

4 | ZT

l,tγ = 0) <M
for almost surely Zl,t for each l = 1 and 2, where δ1 and M are positive constants. Then,
there exist constants c1, c2 > 0 such that for each l ∈ {1,2}, if γ1,γ2 ∈N (γl0; δl), then

E |GT [Ut {1l,t(γ1)− 1l,t(γ2)}]|4 ≤ c1‖γ1 − γ2‖2 (A.7)

and if γ1,γ2 ∈N (γ10; δ1) and γ3,γ4 ∈N (γ20; δ1), then

E |GT [Ut {11,t(γ1)− 11,t(γ2)}{12,t(γ3)− 12,t(γ4)}]|4 ≤ c2‖γ1 − γ2‖2‖γ3 − γ4‖2.
(A.8)

PROOF. Denote by Ut{1l,t(γ1)− 1l,t(γ2)}= Ũt(γ1,γ2). Then according to Lemma 3.6
of Peligrad (1982), there is a constant C > 0 such that

E

∣∣∣∣∣
T∑
t=1

{Ũt(γ1,γ2)−EŨt(γ1,γ2)}

∣∣∣∣∣
4

≤C
(
T 2‖Ũt(γ1,γ2)‖42 + T‖Ũt(γ1,γ2)‖44

)
,

which implies that

E
∣∣∣GT {Ũt(γ1,γ2)}

∣∣∣4 ≤2C[E{Ũt(γ1,γ2)}2]2

=2C{E(U2
t |1l,t(γ1)− 1l,t(γ2)|)}2

≤C ′‖γ1 − γ2‖2, (A.9)

for some constant C ′ > 0, where the last inequality is from (A.1) in Lemma A.2. Therefore,
(A.7) is verified. Similarly, (A.8) can be shown by using Lemma 3.6 of Peligrad (1982) and
the moment inequality (A.3).

The next lemma is a maximal inequality for empirical processes with regime indicators
under the α-mixing condition.
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LEMMA A.4 (Maximal inequalities). Suppose that the conditions in Lemma A.3 hold.
Then there exist constants c1, c2 > 0 such that for any λ and ε > 0, it holds that

P

{
sup

γ1,γ2∈N (γl0;ε)
|GT [Ut {1l,t(γ1)− 1l,t(γ2)}]|> λ

}
≤ c1
λ2
ε2, for l= 1,2 and (A.10)

P

 sup
γ1,γ2∈N (γ10;ε)
γ3,γ4∈N (γ20;ε)

|GT [Ut {11,t(γ1)− 11,t(γ2)}{12,t(γ3)− 12,t(γ4)}]|> λ

≤ c2
λ4
ε4.

(A.11)

PROOF. The first part (A.10) follows similar arguments as that in proof of Lemma I.1 of
Lee et al. (2021). We now show (A.11) by adapting the proof of Lemma I.1 of Lee et al.
(2021), which mainly employed Theorem 1 of Bickel and Wichura (1971).

First, by applying (A.8) of Lemma A.3, we know that for some δ > 0 and any γj ,γ ′
j ∈

N (γj0; δ) and any γk,γ ′
k ∈N (γk0; δ),

E
∣∣GT

{
Ut
∣∣1j,t(γj)− 1j,t(γ

′
j)
∣∣ ∣∣1k,t(γk)− 1k,t(γ

′
k)
∣∣}∣∣4 ≤C1‖γj − γ ′

j‖2‖γk − γ ′
k‖2,
(A.12)

for some constant C1 > 0. Let γ0 = (γT

j0,γ
T

k0)
T, γ = (γT

j ,γ
T

k )
T and

JT (γ) =GT {Ut |1j,t(γj)− 1j,t(γj0)| |1k,t(γk)− 1k,t(γk0)|} . (A.13)

By equation (1) of Bickel and Wichura (1971),

sup
γ:∥γ−γ0∥≤ε

|JT (γ)| ≤ d ·M ′′ + |JT (γ̃)| , (A.14)

where d = dj + dk and γ̃ = γ0 + ε1 is the elementwise increment of γ0 by a positive con-
stant ε, and the supremum is taken over a hyper-cube {γ : 0≤ γi − γi,0 ≤ ε, i ∈ [d]}, and the
precise definition and an upper bound of M ′′ are referred to Bickel and Wichura (1971). It
is sufficient to show that each of M ′′ and JT (γ̃) satisfies the conclusion of the lemma since
|a|+ |b|> 2c implies either |a|> c or |b|> c.

To apply Theorem 1 of Bickel and Wichura (1971), we need to consider the increment
of the process JT around a block in the tube Tε = {γ : ‖γ − γ0‖ ≤ ε}. For a block B =
(γ1,γ2] = (γ11, γ21]× · · · × (γ1d,γ2d] in the tube Tε , let

JT (B) =
∑
k1=0,1

· · ·
∑
kd=0,1

(−1)d−k1−···kdJT (γ11 + k1(γ21 − γ11), · · · , γ1d + kd(γ2d − γ1d))

=
∑
k2=0,1

· · ·
∑
kd=0,1

(−1)d−k2−···kd {JT (γ11, γ12 + k2(γ22 − γ12) · · · , γ1d + kd(γ2d − γ1d))

−JT (γ21, γ12 + k2(γ22 − γ12) · · · , γ1d + kd(γ2d − γ1d))} .

It follows from the Cr-inequality that there exists some positive constants C2 and C3 such
that

E |JT (B)|4 ≤C2

∑
k2=0,1

· · ·
∑
kd=0,1

E{|JT (γ11, γ12 + k2(γ22 − γ12) · · · , γ1d + kd(γ2d − γ1d))

− JT (γ21, γ12 + k2(γ22 − γ12) · · · , γ1d + kd(γ2d − γ1d)) |4}. (A.15)
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Let γ1(ψ) = (γ11,ψ
T)T and γ2(ψ) = (γ21,ψ

T)T, which are identical except for the first
element, such that ‖ψ− γ−1,0‖ ≤ ε. Then, (A.15) implies that

E |JT (B)|4 ≤C3 sup
ψ∈N (γ−1,0;ε)

E |JT {γ1(ψ)} − JT {γ2(ψ)}|4 (A.16)

for some positive constant C3. Let ψ̃k be the last dk elements ψ, and let γ1,j(ψ) and γ2,j(ψ)
be the vectors of the first dj elements of γ1(ψ) and γ2(ψ), respectively. Then, note that for
any ψ, by the triangle inequality,

|JT {γ1(ψ)} − JT {γ2(ψ)}|4

≤
∣∣∣GT

{
|Ut| |1j,t(γ1,j(ψ))− 1j,t(γ2,j(ψ))|

∣∣∣1k,t(ψ̃k)− 1k,t(γk0)
∣∣∣}∣∣∣4 . (A.17)

Since ‖γ1,j(ψ) − γ2,j(ψ)‖ ≤ |γ11 − γ21| and ‖ψ̃k − γk0‖ ≤ ε for any ‖ψ − γ0‖ ≤ ε, it
follows from (A.12), (A.16), and (A.17) that there exists some poistive constant C4 such that

E |JT (B)|p ≤C4 |γ11 − γ21|2 ε2 ≤C5 |γ11 − γ21|4 ,

where C5 ≥ C4ε/ |γ11 − γ21|. Now, without loss of generality, we can assume that µ(B) ≥
C5 |γ11 − γ21|d, where µ denotes the Legesque measure in Rd, since we can derive the
same bound by choosing the smallest side length of B as |γ11 − γ21|. This implies that
E |JT (B)|4 ≤ C5 {µ(B)}

p

d for any block B ⊂ Tε. Therefore, we can take γ1 = γ2 = 2 and
β1 = β2 =

2
d in the equation (3) of Bickel and Wichura (1971), implying that their equation

(2) holds with γ = 4 and β = 4
d . Since µ(Tε) = εd, by Theorem 1 of Bickel and Wichura

(1971), we conclude that for any λ,

P(M ′′ > λ)≤ C6

λ4
ε4, (A.18)

for some positive constant C6. Furthermore, by the Markov inequality and the moment bound
in (A.12), there exists some positive constant C7 such that

P{JT (γ̃)> λ} ≤ C7

λ4
ε4. (A.19)

Therefore, (A.11) is proved by combining (A.14), (A.18), and (A.19). This completes the
proof of Lemma A.4.

LEMMA A.5. Suppose that the conditions in Lemma A.3 hold. Then we have

sup
∥γl−γl0∥≲T−1

√
TET {Ut |1l,t(γl)− 1l,t(γl0)|}= op(1), for l= 1,2 and (A.20)

sup
∥γ1−γ10∥≲T−1

∥γ2−γ20∥≲T−1

TET {Ut |11,t(γ1)− 11,t(γ10)| |12,t(γ2)− 12,t(γ20)|}= op(1). (A.21)

PROOF. For each l= 1 and 2, letting ε= cT−1 in (A.10) for some constant c > 0 implies
that

sup
∥γl−γl0∥≲T−1

√
T (ET −E){Ut |1l,t(γl)− 1l,t(γl0)|}=Op

(
T− 2

p

)
,

for p ∈ (4,4 + β) with β specified in Lemma A.3. According to (A.1) in Lemma A.2,

sup
∥γl−γl0∥≲T−1

√
TE{Ut |1l,t(γl)− 1l,t(γl0)|}=O

(
T−1

)
.
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Combining the above two equalities leads to (A.20). Similarly, letting ε= cT−1 in (A.11) for
some constant c > 0 implies that

sup
∥γ1−γ10∥≲T−1

∥γ2−γ20∥≲T−1

√
T (ET −E){Ut |11,t(γ1)− 11,t(γ10)| |12,t(γ2)− 12,t(γ20)|}=Op

(
T− 4

p

)
.

According to (A.2) in Lemma A.2 we have

sup
∥γ1−γ10∥≲T−1

∥γ2−γ20∥≲T−1

E{Ut |11,t(γ1)− 11,t(γ10)| |12,t(γ2)− 12,t(γ20)|}=Op
(
T−2

)
.

Combining the above two equations leads to (A.21).

LEMMA A.6. Under the conditions of Lemma A.3, for any constatnts λ, c1, c2 > 0 and
j 6= k ∈ {1, · · · ,4}, we have

sup
c1T−1≤∥γ−γ0∥≤c2

{∣∣∣(ET −E)
(
Ut1

(j)
t (γ0)1

(k)
t (γ)

)∣∣∣− λ‖γ − γ0‖
}
=Op(T

−1). (A.22)

PROOF. The event that j 6= k can be classed into two cases: (i) (j, k) ∈ S(i) for i= 1 or
2; and (ii) (j, k) /∈ S(i) for both i= 1 and 2.

Case (i): (j, k) ∈ S(i) for i ∈ {1,2}. Without loss of generality, we take j = 1, k = 2 to
illustrate. Note that

1
(1)
t (γ0)1

(2)
t (γ) =1(ZT

1,tγ1 ≤ 0<ZT

1,tγ10)1(Z
T

2,tγ20 > 0,ZT

2,tγ2 > 0)

=1(ZT

1,tγ1 ≤ 0<ZT

1,tγ10)
{
1(ZT

2,tγ20 > 0)− 1(ZT

2,tγ2 ≤ 0<ZT

2,tγ20)
}
,

which implies that∣∣∣(ET −E)
{
Ut1

(1)
t (γ0)1

(2)
t (γ)

}∣∣∣≤ ∣∣∣(ET −E)
{
Ũt1(Z

T

1,tγ1 ≤ 0<ZT

1,tγ10)
}∣∣∣

+
∣∣(ET −E)

{
Ut1(Z

T

1,tγ1 ≤ 0<ZT

1,tγ10)1(Z
T

2,tγ2 ≤ 0<ZT

2,tγ20)
}∣∣=: I1,T (γ) + I2,T (γ), say,

where Ũt = Ut1
(
ZT

2,tγ20 > 0
)
. Define the “shells”

ST,j =
{
γ : c1jT

−1 ≤ ‖γ − γ0‖< c1(j + 1)T−1
}
.

Then, for any M > 0, we have

P

(
sup

c1T−1≤∥γ−γ0∥≤c2
T {I1,T (γ)− λ‖γ − γ0‖/2}>M

)

≤
∞∑
j=1

P
{
γ ∈ ST,j ,

∣∣∣(ET −E)
{
Ũt1(Z

T

1,tγ1 ≤ 0<ZT

1,tγ10)
}∣∣∣>MT−1 + λ‖γ − γ0‖/2

}

≤
∞∑
j=1

P
{
γ ∈ ST,j ,

∣∣∣(ET −E)
{
Ũt1(Z

T

1,tγ1 ≤ 0<ZT

1,tγ10)
}∣∣∣> (M + c1jλ/2)T

−1
}

≤
∞∑
j=1

c3(j + 1)2

(M + c1jλ/2)4
=O

(
1

M4

)
, (A.23)

where the last inequality is by invoking (A.10) in Lemma A.4. Via the similar argument, we
obtain

P

(
sup

c1T−1≤∥γ−γ0∥≤c2
T {I2,T (γ)− λ‖γ − γ0‖/2}>M

)
=O

(
1

T 2M4

)
. (A.24)
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This together with (A.23) verifies (A.22).
Case (ii): (j, k) /∈ S(i) for either i= 1 or 2. Without loss of generality, we take j = 1, k = 3

to illustrate. Then

1
(1)
t (γ0)1

(3)
t (γ) =1(ZT

1,tγ1 ≤ 0<ZT

1,tγ10)1(Z
T

2,tγ2 ≤ 0<ZT

2,tγ20). (A.25)

Therefore,
∣∣∣(ET −E)

{
Ut1

(1)
t (γ0)1

(3)
t (γ)

}∣∣∣ = I2(γ) and the result follows from (A.24).
Combining the two cases completes the proof for the lemma.

A.2. Lemmas for Poisson point processes. We first introduce some basic notations for
the point measures and point processes following the definitions in Resnick (2008).

DEFINITION A.2 (Point measures). Suppose that E is a locally compact space with a
countable basis whose Borel σ-algebra of subsets is E . A point process on E is a measure
m of the following form: for {xi, i≥ 1}, which is a countable collection of points of E, and
any Borel set A ∈ E , m(A) :=

∑
i=1 1 (xi ∈A). If m(K)<∞ for any compact set K ∈ E ,

then m is said to be Radon. Let Mp(E) be the space of all Radon point measures on E.
A sequence {mn} ⊂Mp(E) is said to converge vaguely to m, if

∫
E fdmn →

∫
E fdm as

n→ ∞ for all f ∈ CK(E), the continuous function space with compact support K . The
vague convergence induces a vague topology on Mp(E). Topological space Mp(E) is then
metrizable as a complete separable metric space. Define Mp(E) as the σ-algebra generated
by open sets in Mp(E).

DEFINITION A.3 (Point processes and their weak convergence). A point process on E
is a measurable map from a probability space (Ω,A,P)→ (Mp(E),Mp(E)), i.e., for every
event ω ∈ Ω, the realization of the point process N(ω) is some point measure in Mp(E). A
sequence of point processes Nn weak converges of a point process N, denoted as Nn ⇒N
if EP{h(Nn)}→ EP{h(N)} for all continuous and bounded functions h mapping Mp(E) to

R. Note that if Nn ⇒N then
∫
E f(x)dNn(X)

d−→
∫
E f(x)dN(X) for any f ∈ CK(E) by

the continuous mapping theorem.

DEFINITION A.4 (Poisson point process). A point process N is called a Poisson process
measure (PRM) with mean measure µ if N satisfies

(i) for any F ∈ E and any non-negative integer k, P(N(F ) = k) = exp{−µ(F )}{µ(F )}k /k!
if µ(F )<∞ and P(N(F ) = k) = 0 if µ(F ) =∞;

(ii) if F1, · · · ,Fk are mutually disjoint sets in E , then {N(Fi), i≤ k} are independent
random variables.

The following two lemmas, from Proposition 3.22 of Resnick (2008) and Theorem 1 of
Meyer (1973), respectively, provide key tools to study the weak convergence of point pro-
cesses of extreme events with α-mixing time series.

LEMMA A.7 (Kallenberg’s theorem). Suppose that N is a point process on E and T is
a basis of relatively compact open sets such that T is closed under finite unions and inter-
sections, and for any F ∈ T , P{N(∂F ) = 0}= 1. Then N̂T ⇒N if for all F ∈ T ,

lim
T→∞

P
{
N̂T (F ) = 0

}
= P{N(F ) = 0} , and (A.26)

lim
T→∞

E
{
N̂T (F )

}
= E{N(F )}<∞. (A.27)
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LEMMA A.8 (Meyer’s theorem). Suppose that the sequence {Ant }
n
t=1 (n = 1,2, · · · ) is

stationary and α-mixing with mixing coefficient αn(k) defined as

αn(k) = sup
E∈Ωm

1 ,
F∈Ωn

m+k+1

|P(EF )− P(E)P(F )| , where ΩJj = σ(Anj , · · · ,AnJ) 1≤ j < J ≤ n

for any 1 ≤ k ≤ n. Suppose that the probability of the event Ant is P(Ant ) = a
n + o( 1n) for

some a > 0. Moreover, suppose that the following conditions hold: there exist sequences of
block sizes {pm,m≥ 1}, {qm,m≥ 1} and {tm =m(pm + qm),m≥ 1} such that
(a) for any r > 0, mrαtm(qm)→ 0 as m→∞, where tm =m(pm + qm),
(b) qm/pm → 0, pm+1/pm → 1 as m→∞, and
(c) Ipm =

∑pm−i
i=1 (pm − i)P(Atm1 ∩Atmi+1) = o( 1

m) as m→∞.
Then it holds that

P (exactly k events among {Ant }
n
t=1 happen)→ e−aak

k!
as n→∞.

Remark. (i) Note that for any given n <∞, the α-mixing coefficient αn(k) defined above is
upper bounded by the commonly used α-mixing coefficient α(k) (see e.g., Doukhan, 1995),
where the supreme of F is taken over Ω∞

m+k+1 instead of Ωnm+k+1. (ii) The proof of the above
theorem is based on partitioning the observations into consecutive blocks of size pm and qm
alternately. The condition Ipm = o(1/m) prevents clusters of rare events Ant , preventing the
compound Poisson processes as the limit.

A.3. Lemmas for epi-convergence. In the investigation of the limiting distribution of
γ̂ and β̂, we will employ the tool of epi-convergence in distribution (Knight, 1999), which is
useful in establishing weak convergences of “argmin” functionals, and is more general than
uniform convergence, because it allows for more general discontinuity.

DEFINITION A.5 (Epi-convergence in distribution). Suppose that {Qn(x)} is a sequence
of random lower semi-continuous (l-sc) functions, namely Qn(x)≤ lim infxj→xQn(xj) for
any x and any sequence {xj} whose limit is x. Let L be the space of l-sc functions f :Rd →
R̄, where R̄= [−∞,∞]. The space L can be made into a complete separable metric space.
(Rockafellar and Wets, 1998).

A sequence of functions {Qn} ∈ L is said to epi-converge in distribution to Q if for any
closed rectangles R1, · · · ,Rk in Rd with open interiors R◦

1, · · · ,R◦
k, and any real numbers

r1, · · · , rk:

P(∩kj=1{ inf
x∈Rj

Q(x)> rj})≤ lim inf
n→∞

P(∩kj=1{ inf
x∈Rj

Qn(x)> rj})

≤ limsup
n→∞

P(∩kj=1{ inf
x∈R◦

j

Qn(x)> rj})

≤P(∩kj=1{ inf
x∈R◦

j

Q(x)> rj}).

The above definition of the epi-convergence can be difficult to verify. Instead, we will use
an equivalent characterization given by Knight (1999), using the finite-dimensional conver-
gence and stochastic equi-lower-semicontinuouity.
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DEFINITION A.6 (Finite-dimensional convergence in distribution). A sequence of ran-
dom functions {Qn(x)} converges to Q(x) in distribution in the finite-dimensional sense if
for any finite positive integer k and any (x1, · · · ,xk), it holds that

(Qn(x1), · · · ,Qn(xk))
d−→ (Q(x1), · · · ,Q(xk)) .

DEFINITION A.7 (Stochastic equi-lower-semicontinuous). A sequence {Qn} ∈ L,
where L is the space of l-sc functions defined in Definition A.5, is said to be stochastic
equi-lower-semicontinuous (s.e-l-sc), if for any compact set B and any ϵ, δ > 0, there ex-
ists x1, · · · ,xk ∈ B, for a finite integer k, and some open sets {V (xi)}ki=1 covering B and
containing x1, · · · ,xk, such that

limsup
n→∞

P
(
∪kj=1

{
inf

x∈V (xj)
Qn(x)≤min(ϵ−1,Qn(xj)− ϵ)

})
< δ.

LEMMA A.9 (Theorem 2 of Knight, 1999). Let {Qn} be a stochastic e-l-sc sequence of
functions. Then {Qn} converges to Q in distribution in the finite-dimensional sense if and
only if {Qn} epi-converges in distribution to Q.

APPENDIX B: PROOFS FOR SECTION 3

B.1. Proof of Proposition 1. The following proof is for Proposition 1 on the identifica-
tion of θ0.

PROOF. Note that M(θ) can be expanded as

M(θ) = E{m(W ,θ)}

=E(ε2) +E[
4∑

k=1

4∑
h=1

{XT(βh −βk0)}21(k)(γ0)1
(h)(γ)]

+ 2E{
4∑

k=1

4∑
h=1

εXT(βh −βk0)1(k)(γ0)1
(h)(γ)}

=E(ε2) +
4∑

k=1

4∑
h=1

E[{XT(βh −βk0)}21(k)(γ0)1
(h)(γ)]

=M(θ0) +

4∑
k=1

4∑
h=1

Ak,h(θ), say, (B.1)

where the second equality is because of E (ε|X,Z) = 0. If θ 6= θ0, then one of the following
two cases will hold: (1): γ 6= γ0, or (2): γ = γ0 while β 6= β0. We now consider the two
cases respectively.

Case (1). Suppose that γ 6= γ0. Then for some l ∈ {1,2} and h ∈ {1, · · · ,4}, the true
splitting hyperplane Hl0 : z

T

l γl0 = 0 will partition through Rh(γ). Because Assumption 2
(i) implies that P{|ql|< ϵ|Z−1,l} > 0 almost surely for any ϵ > 0, meaning there is a pos-
itive probability that Z will locate around the neighborhood of the hyperplane zT

l γl0 =
0, we have that for some (k, j) ∈ S(l), it holds that P{Z ∈Rk(γ0)∩Rh(γ)} > 0 and
P{Z ∈Rj(γ0)∩Rh(γ)}> 0. Therefore,

Ak,h(θ)≥ λ0‖βh −βk0‖2, Aj,h(θ)≥ λ0‖βh −βj0‖2
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according to Assumption 2 (ii). Since βk0 6= βj0, either Ak,h(θ)> 0 or Aj,h(θ)> 0. Conse-
quently, M(θ)≥M(θ0) +Ak,h(θ) +Aj,h(θ)>M(θ0).

Case (2). Suppose that γ = γ0 while βk0 6= βk for some k ∈ {1, · · · ,4}. In such a case,

Ak,k(θ) = E
[
{XT

t (βk −βk0)}
2
1{Zt ∈Rk(γ0)}

]
≥ λ0‖βk −βk0‖2 > 0,

by Assumption 2 (ii). Therefore, M(θ) ≥M(θ0) + Ak,k(θ) > M(θ0). Combining the two
cases yields that M(θ)>M(θ0) if θ 6= θ0, which completes the proof.

B.2. Proof of Theorem 3.1. The following proof is for Theorem 3.1 on the consistency
of θ̂.

PROOF. The consistency of θ̂ follows the standard approach for M -estimation (van der
Vaart, 1998). First, we strengthen the result of Proposition 3.1 by a separable condition
(B.2), which can be induced by the continuity of M(θ) at θ0. Note that M(θ) = E(Y 2) −
2
∑4

k=1E{YXTβk1 (Z ∈Rk(γ))} +
∑4

k=1E{(XTβk)
21 (Z ∈Rk(γ))}. The continuity

with respect to β is obvious and it remains to show the continuity at γ0. Note that for any
θ 6= θ0, ∣∣E{(XTβ)21 (Z ∈Rk(γ))} −E{(XTβ)21 (Z ∈Rk(γ0))}

∣∣
≤E1/2{(XTβ)4}|E{1 (Z ∈Rk(γ))} −E{1 (Z ∈Rk(γ0))}|1/2

≤E1/2{(XTβ)4}{
2∑
l=1

|P(ZT

l γl < 0)− P(ZT

l γl0 < 0)|}1/2 ≲
√

‖γ − γ0‖,

where the last inequality is due to Assumption 3.(ii). Thus, M(θ) is continuous at θ0, imply-
ing that

sup
∥θ−θ0∥>ϵ

M(θ)>M(θ0) ∀ϵ > 0. (B.2)

As a direct consequence of Lemma A.1. we have the following uniform convergence

sup
θ∈Θ

|M(θ)−MT (θ)|
P−→ 0, (B.3)

as T →∞. By the definition of θ̂, we have MT (θ̂)≤MT (θ0)+op(1). Because (B.3) implies

that MT (θ0)
P−→M(θ0). It follows that MT (θ̂)≤M(θ0) + op(1), whence

M(θ̂)−M(θ0)≤M(θ̂)−MT (θ̂) + op(1)

≤ sup
θ∈Θ

|M(θ)−MT (θ)|+ op(1)
P−→ 0. (B.4)

Because of (B.2), for any ϵ > 0, there exists η > 0 such that M(θ)>M(θ0)+η if ‖θ−θ0‖>
ϵ. Thus, the event

{
‖θ̂− θ̃0‖> ϵ

}
is contained in the event

{
M(θ̂)>M(θ0) + η

}
, whose

probability converges to 0 in view of (B.4), which completes the proof for ‖θ̂− θ0‖
P−→ 0 as

T →∞.

B.3. Proof of Corollary 3.1.
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PROOF. Let DT = {Wt}Tt=1. We prove the corollary for k = 1 without loss of gen-
erality, where R1(γ0) = {zT

l γl0 > 0, l= 1 and 2}. Then R1(γ0) \ R1(γ) is a subset of
∪2
l=1 {z : zT

l γl0 > 0> zT

l γl}. Therefore,

P{Z ∈R1(γ0) \R1(γ̂)|DT } ≤
2∑
l=1

P (ZT

l γl0 > 0>ZT

l γ̂l|DT )

≤ c1

2∑
l=1

‖γ̂l − γl0‖, (B.5)

where the probability is taken over Z , and the second inequality is due to the consistency
of γ̂ and Assumption 3.(ii). Therefore, P{Z ∈R1(γ0) \R1(γ̂)|DT } → 0 as T →∞. Sim-
ilarly, we have P{Z ∈R1(γ̂) \R1(γ0)|DT } → 0. Since P{Z ∈R1(γ0)4R1(γ̂)|DT } =
P{Z ∈R1(γ0) \R1(γ̂)|DT }+ P{Z ∈R1(γ̂) \R1(γ0)|DT }, we obtain

P{Z ∈R1(γ0)4R1(γ̂)|DT }
P−→ 0

as T →∞. Because P{Z ∈R1(γ0)4R1(γ̂)|DT } is uniformly integrable, we have

P{Z ∈R1(γ0)4R1(γ̂)}= EDT
[P{Z ∈R1(γ0)4R1(γ̂)|DT }]→ 0,

which completes the proof.

B.4. Proof of Theorem 3.2. The following proof is for Theorem 3.2 on the convergence
rate of θ̂.

PROOF. The convergence rate will be derived in two steps. In the first step, we establish
that there is a metric d such that

d2(θ,θ0)≲ E{m(Wt,θ)−m(Wt,θ0)} for any θ ∈N (θ0; δ0), (B.6)

for some δ0 > 0. In the second step, we derive a convergence rate of E{m(Wt, θ̂) −
m(Wt,θ0)} by bounding (ET −E){m(Wt, θ̂)−m(Wt,θ0)}, which combined with Step 1
will lead to the desired convergence rate of θ̂.

Step 1. Note that we can decompose E{m(Wt,θ)−m(Wt,θ0)} as

E{m(Wt,θ)−m(Wt,θ0)} (B.7)

=

4∑
j=1

E
{
(XT

t (βj0 −βj))
2
1
(j)
t (γ0)1

(j)
t (γ)

}

+

4∑
i=1

4∑
k ̸=i

E
{
(XT

t (βi0 −βk))
2
1
(i)
t (γ0)1

(k)
t (γ)

}
,

=:

4∑
j=1

Jj(θ) +

4∑
i=1

4∑
k ̸=i

Gik(θ), say,

where the Jj(θ) term corresponds to the part of observations which are classified to the jth
region under both the hyperplanes with coefficient γ0 and γ, and the Gik term corresponds
of the part of observations which are classified to the ith region under the hyperplanes with
coefficient γ0, but classified to the kth region under γ.
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First, for each j ∈ {1, · · · ,4}, note that

P{Zt ∈Rj(γ0)∩Rj(γ)}=P{Zt ∈Rj(γ0)} − P{Zt ∈Rj(γ0) \Rj(γ)}
(i)

≥P{Zt ∈Rj(γ0)} − c0‖γ0 − γ‖ ≥ P{Zt ∈Rj(γ0)} − c0δ

(ii)

≥P(Zt ∈Rj(γ0))/2> 0, (B.8)

uniformly for any γ ∈ N (γ0; δ), where (i) is due to (B.5) and (ii) is by taking δ sufficiently
small, which is legitimate because of the consistency of γ̂. Then by Assumption 2.(ii),

Jj(θ)≥ c1‖βj0 −βj‖2. (B.9)

For each l ∈ {1,2}, we choose one pair (il, kl) ∈ S(l). Without loss of generality, let
i1 = 1, k1 = 2, i2 = 1, k2 = 3. We now bound the term Gilkl(θ) from below,

Gilkl(θ) =E
{
(XT

t (βil0 −βkl))
2
1
(il)
t (γ0)1

(kl)
t (γ)

}
=E
{
(XT

t δilkl,0)
2
1
(il)
t (γ0)1

(kl)
t (γ)

}
+E

{
(XT

t (βkl0 −βkl))
2
1
(il)
t (γ0)1

(kl)
t (γ)

}
+ 2E

{
XT

t δilkl,0X
T

t (βkl0 −βkl)1
(il)
t (γ0)1

(kl)
t (γ)

}
≥E
{
(XT

t δilkl,0)
2
1
(il)
t (γ0)1

(kl)
t (γ)

}
− 2E

{
|XT

t δilkl,0| |XT

t (βkl0 −βkl)|1
(il)
t (γ0)1

(kl)
t (γ)

}
.

Similarly,

Gklil(θ)≥E
{
(XT

t δilkl,0)
2
1
(kl)
t (γ0)1

(il)
t (γ)

}
− 2E

{
|XT

t δilkl,0| |XT

t (βil0 −βil)|1
(kl)
t (γ0)1

(il)
t (γ)

}
.

Let gilklt = (XT

t δilkl,0)
2
1{Zt ∈Ril(γ0)∪Rkl(γ0)}. Then

(XT

t δilkl,0)
2
1
(il)
t (γ0)1

(kl)
t (γ)+(XT

t δilkl,0)
2
1
(kl)
t (γ0)1

(il)
t (γ) = gilklt |1l,t(γl0)− 1l,t(γl)| ,

whose expectation is bounded by

E
{
gilklt |1l,t(γl0)− 1l,t(γl)|

}
≥ c3‖γl0 − γl‖, (B.10)

for some constants c3 > 0 due to Assumption 4 (ii) and Lemma A.2 (ii).
For the second term of the lower bound of Gilkl(θ), note that there exists a positive con-

stant c4 such that

E
{
|XT

t δilkl,0| |XT

t (βkl0 −βkl)|1
(il)
t (γ0)1l,t(γl,γl0)

}
≤ ‖βkl0 −βkl‖‖δilkl,0‖E

(
‖Xt‖21l,t(γl,γl0)

)
≤ c4‖βkl0 −βkl‖‖γl0 − γl‖, (B.11)

where the first inequality follows from the Cauchy-Schwartz inequality and the second is
implied by Lemma A.2. Similarly,

E
{
|XT

t δilkl,0| |XT

t (βil0 −βil)|1
(kl)
t (γ0)1l,t(γl,γl0)

}
≤c4‖βil0 −βil‖‖γl0 − γl‖. (B.12)
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Combining (B.10)–(B.12) leads to an lower bound of Gilkl(θ) + Gklil(θ). For each given
l= 1 and 2, these together with (B.9) with j = kl and il lead to

{Jkl(θ) + Jil(θ)}/2 +Gilkl(θ) +Gklil(θ)

≥c1(‖βkl0 −βkl‖2 + ‖βil0 −βil‖2)/2 + c3‖γl0 − γl‖

− 2c4 (‖βkl0 −βkl‖+ ‖βil0 −βil‖)‖γl0 − γl‖

=
∑

jl∈{il,kl}

(
c1
2
‖βjl0 −βjl‖2 +

c3
2
‖γl0 − γl‖ − 2c4‖βjl0 −βjl‖‖γl0 − γl‖)

=
∑

jl∈{il,kl}

Llj , say. (B.13)

A lower bound for the term Llj can be derived by considering the following two cases.
(i) If c1‖βjl0 −βjl‖ ≥ 8c4‖γl0 − γl‖, then

Llj ≥
c1
4
‖βjl0 −βjl‖2 +

c3
2
‖γl0 − γl‖.

(ii) If c1‖βjl0 −βjl‖< 8c4‖γl0 − γl‖, then

c3
2
‖γl0 − γl‖ − 2c4‖βjl0 −βjl‖‖γl0 − γl‖ ≥

c3
2
‖γl0 − γl‖ − 16

c24
c1

· ‖γl0 − γl‖2,

which can be further bounded from below by c3‖γl0 − γl‖/4 provided that ‖γl0 − γl‖ ≤
c1c3/(64c

2
4), which is ensured by the consistency of γ̂. Therefore, in the case (ii),

Llj ≥
c1
2
‖βjl0 −βjl‖2 +

c3
4
‖γl0 − γl‖,

provided that ‖γl0 − γl‖ ≤ c1c3/(64c
2
4). Combining Cases (i) and (ii), we have

Llj ≥ c5(‖βjl0 −βjl‖2 +
1

2
‖γl0 − γl‖),

for some generic constant c5 > 0, as long as ‖γl0 − γl‖ ≤ c24/(32c1). By (B.13) we have

{Jkl(θ) + Jil(θ)}/2 +Gilkl(θ) +Gklil(θ)

≥c5(‖βil0 −βil‖2 + ‖βkl0 −βkl‖2 + ‖γl0 − γl‖), (B.14)

for some positive constant c5. Divide the regime index set {1, · · · ,4} to two parts: K1 =
{kl, il : l ∈ {1,2}} and K2 = {1, · · · ,4}/K1. Then from (B.7), (B.9) and (B.14),

M(θ)−M(θ0)≥
∑
k∈K1

Jj(θ) +
∑
k∈K2

Jj(θ) +

K∑
i=1

K∑
k ̸=i

Gik(θ)

≥
2∑
l=1

{Gilkl(θ) +Gklil(θ) +
Jkl(θ) + Jil(θ)

2
}+

∑
k∈K2

Jj(θ)

≥c5
2∑
l=1

(‖βil0 −βil‖2 + ‖βkl0 −βkl‖2 + ‖γl0 − γl‖) + c1
∑
k∈K2

‖βk0 −βk‖2

≥c6(
4∑

k=1

‖βk0 −βk‖2 +
2∑
l=1

‖γl0 − γl‖),
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where c6 =min{c1, c5}. Finally, by the triangle inequality,

M(θ)−M(θ0)≥ c6(‖β0 −β‖2 + ‖γ0 − γ‖), (B.15)

provided that γ ∈ N (γ0; δ0) for some δ0 > 0. Denoting by d(θ,θ0) =
√

‖γ − γ0‖+ ‖β −
β0‖ leads to the desired (B.6).

Step 2. Note that for any θ ∈Θ, we have

(E−ET ){m(Wt,θ)} − (E−ET ){m(Wt,θ0)}

=

4∑
j=1

(E−ET )[{(XT

t (βj0 −βj))21
(j)
t (γ0)1

(j)
t (γ)}]

+

4∑
i=1

4∑
k ̸=i

(E−ET )[{(XT

t (βi0 −βk))21
(i)
t (γ0)1

(k)
t (γ)}]

+ 2

4∑
j=1

ET [{εt(XT

t (βj0 −βj))1
(j)
t (γ0)1

(j)
t (γ)}]

+ 2

4∑
i=1

4∑
k ̸=i

ET [{εtXT

t (βi0 −βk)1
(i)
t (γ0)1

(k)
t (γ)}]

=S1,T + S2,T + S3,T + S4,T , say. (B.16)

We now bound the four terms respectively. For S1,T , note that 1(j)
t (γ) = 1−

∑4
k ̸=j 1

(k)
t (γ)

and

S1,T ≤
4∑
j=1

∣∣∣(E−ET )
{
(XT

t (βj0 −βj))
2
1
(j)
t (γ0)1

(j)
t (γ)

}∣∣∣
≤

4∑
j=1

∣∣∣(E−ET )
{
(XT

t (βj0 −βj))
2
1
(j)
t (γ0)

}∣∣∣
+

4∑
j=1

4∑
k ̸=j

(E−ET )
∣∣∣{(XT

t (βj0 −βj))
2
1
(j)
t (γ0)1

(k)
t (γ)

}∣∣∣
=S1,a,T + S1,b,T , say.

For S1,a,T , by the Cauchy-Schwartz inequality and the ULLN in Lemma A.1, we have
S1,a,T = ‖β − β0‖2op(1). For S1,b,T , due to the compactness of the parameter space for
βj , Assumption 4 (iv) and Lemma A.6, it can be shown that S1,b,T = λ‖γ −γ0‖+Op(T

−1)
for any λ > 0 and γ ∈ (c1T

−1, c2) for any c1, c2 > 0. Therefore,

S1,T ≤ ‖β−β0‖2op(1) + λ‖γ − γ0‖+Op(T
−1). (B.17)

For the second term, we have

S2,T ≤2

4∑
i=1

4∑
k ̸=i

∣∣∣(E−ET )
{
(XT

t (βi0 −βk))
2
1
(i)
t (γ0)1

(k)
t (γ)

}∣∣∣
=λ‖γ − γ0‖+Op(T

−1), (B.18)
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for any λ > 0, γ ∈ (c1T
−1, c2), and any c1, c2 > 0, implied by the same reasoning for the

S1,b,T term. For S3,T , similar to S1,T , it can be decomposed by

S3,T≤2

4∑
j=1

∣∣∣ET {εt (XT

t (βj0 −βj))1
(j)
t (γ0)

}∣∣∣
+ 2

4∑
j=1

4∑
k ̸=j

∣∣∣ET {εt (XT

t (βj0 −βj))1
(j)
t (γ0)1

(k)
t (γ)

}∣∣∣
=S3,a,T + S3,b,T , say.

For S3,a,T , by the martingale central limit theorem (Hall and Heyde, 1980) we have S3,a,T =

‖β−β0‖Op(T−1/2). For S3,b,T , using the same arguments as that for S1,b,T , S3,b,T = λ‖γ−
γ0‖+Op(T

−1). Therefore,

S3,T ≤ ‖β−β0‖Op(T−1/2) + λ‖γ − γ0‖+Op(T
−1). (B.19)

For S4,T , following the same reasons for S2,T , it can be shown that

S4,T ≤ λ‖γ − γ0‖+Op(T
−1). (B.20)

Putting (B.17)–(B.20) together, we obtain that if γ ∈ (c1T
−1, c2) for some c1, c2 > 0, then

(E−ET ){m(Wt,θ)−m(Wt,θ0)} ≤‖β−β0‖Op(T−1/2) + ‖β−β0‖2op(1)

+ 4λ‖γ − γ0‖+Op(T
−1).

Since ET {m(Wt, θ̂)} ≤ ET {m(Wt,θ0)} and (B.15), we obtain

C6(‖β̂−β0‖2 + ‖γ̂ − γ0‖)≤‖β−β0‖Op(T−1/2) + ‖β−β0‖2op(1)

+ 4λ‖γ − γ0‖+Op(T
−1).

Since the above bound holds for any λ ∈ (0,1), we can take λ <C6/4, which delivers

C6‖β̂−β0‖2 + (C6 − 4λ)‖γ̂ − γ0‖ ≤ ‖β−β0‖Op(T−1/2) + ‖β̂−β0‖2op(1) +Op(T
−1),

which further implies ‖β̂−β0‖2 =Op(T
−1), and thus, ‖γ̂ − γ0‖=Op(T

−1).

Proof of Corollary 3.2

PROOF. It can be seen straightforwardly from the proof of Corollary 3.1 that for each
k ∈ {1, · · · ,4},

P{Z ∈Rk(γ0)4Rk(γ̂)|DT }≲
2∑
l=1

‖γ̂l − γl0‖, (B.21)

which is of order Op(T
−1/2) by Theorem 3.2. With the uniformly integratability of

P{Z ∈Rk(γ0)4Rk(γ̂) | DT }, the conclusion of the corollary follows.
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B.5. Proof of Theorem 3.3. The following proof is for Theorem 3.3 on the asymptotic
distribution of θ̂, which requires the following lemmas. Considering that the proofs for these
lemmas are quite lengthy, we provide their proofs later in Subsections B.6–B.10.

For any (uT,vT)T ∈R4p+d1+d2 , we define

QT (u,v) =

T∑
t=1

{m(Wt,β0 +
u√
T
,γ0 +

v

T
)−m(Wt,β0,γ0)}. (B.22)

The following lemma establishes the separability for QT (u,v), whose proof is available in
Section B.6.

LEMMA B.1. Under Assumptions 1-5, uniformly for (uT,vT)T in any compact region of
R4p+d1+d2 , we have

QT (u,v) =WT (u) +DT (v) + op(1), (B.23)

where

WT (u) =

4∑
j=1

[uT

jE{XtX
T

t 1
(j)
t (γ0)}uj − 2

uT

j√
T

T∑
t=1

Xtεt1
(j)
t (γ0)], (B.24)

and

DT (v) =

T∑
t=1

2∑
l=1

∑
(j,k)∈S(l)

ξ
(j,k)
t 1

{
s
(j)
l

(
Tql,t +Z

T

−1,l,tv−1,l

)
≤ 0< s

(j)
l Tql,t

}
, (B.25)

with

ξ
(j,k)
t =

(
δT

jk,0XtX
T

t δjk,0 + 2XT

t δjk,0εt
)
{1(j)

t (γ0) + 1
(k)
t (γ0)},

where δjk,0 = βj0 −βk0, ql,t =ZT

l,tγl0, S(l) is the set of indices of adjacent regions split by

the l-th hyperplane as defined in (3), and s(j)l = sign(zT

l γl0) for z ∈Rj(γ0) as defined in (2)
of the main text.

The next lemma is to obtain the finite-dimensional weak limit of DT (v), whose behaviour
is determined by the point processes induced by the observations which are near the split-
ting hyperplanes. The following notations are needed for this lemma and its proof. For each
l = 1,2 and (j, k) ∈ S(l), suppose (ql,Z−1,l, ξ

(j,k)) follows the stationary distribution of
(ql,t,Z−1,l,t, ξ

(j,k)
t ). We denote Fql|Z−1,l

(q|Z−1,l) and Fξ(j,k)|ql,Z−1,l
(ξ|ql,Z−1,l) as the con-

ditional distributions of ql onZ−1,l and ξ(j,k) on (ql,Z−1,l), respectively, and the correspond-
ing conditional densities are fql|Z−1,l

(q|Z−1,l) and fξ(j,k)|ql,Z−1,l
(ξ|ql,Z−1,l), respectively.

Let Z−1,l be the compact support of the density of Z−1,l as required in Assumption 5.

LEMMA B.2. Under Assumptions 1-5, the finite-dimensional weak limit of DT (v) in
(B.25) is

D(v) =

2∑
l=1

∑
j,k∈S(l)

∞∑
i=1

ξ
(j,k)
i 1

{
s
(j)
l

(
J
(j,k)
i,l + (Z

(j,k)
l,i )Tv−1,l

)
≤ 0< s

(j)
l J

(j,k)
i,l

}
, (B.26)

for v = (vT

1 ,v
T

2 )
T, where {(ξ(j,k)i ,Z

(j,k)
l,i )}∞i=1 are independent copies of (ξ̄(j,k),Z−1,l)

with ξ̄(j,k) ∼ Fξ(j,k)|ql,Z−1,l
(ξ|0,Z−1,l), J

(j,k)
l,i = J (j,k)

l,i /fql|Z−1,l
(0|Z(j,k)

l,i ) with J (j,k)
l,i =
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s
(j)
l

∑i
n=1 E

(j,k)
l,n and {E(j,k)

l,n }∞n=1 are independent unit exponential variables which are in-

dependent of {(ξ(j,k)i ,Z
(j,k)
l,i )}∞i=1. Moreover, {(ξ(j,k)i ,Z

(j,k)
l,i , J

(j,k)
l,i )}∞i=1 are independent

across l= 1,2 and (j, k) ∈ S(l).

The following Lemma B.3 establishes the stochastic equi-lower-semicontinuity of {DT (v)},
which together with the finite-dimensional converges in distribution implies the epi-
convergence in distribution.

LEMMA B.3. Under Assumptions 1-5, the sequence {DT (v)} defined in (B.25) is
stochastic equi-lower-semicontinuous, namely that for any compact set B ⊂Rd1+d2 and any
ϵ, δ > 0, there exists v1, · · · ,vm ∈B, where m is a finite integer depending on B, and some
open sets V (v1), · · · , V (vm) covering B and containing v1, · · · ,vm, such that

limsup
T→∞

P
(
∪mj=1

{
inf

v∈V (vj)
DT (v)≤min(ϵ−1,DT (vj)− ϵ)

})
< δ.

To present our next lemma, we first define the following class of piece-wise constant func-
tions on Rd as

F =

{
f(v) =

∞∑
i=0

ai1{v ∈ Fi}, ai ∈R,Fi is a connected set in Rd,Fi ∩ Fj = ∅ if i 6= j

}
.

For each f ∈ F , let f̃ =
∑∞

i=0 i1{v ∈ Fi} be its associated pure jump process, which has
a jump size 1 when moving from Fi to Fi+1. We refer to the sets {Fi} as the level sets
for f and f̃ . Note that any realization of both DT (v) and D(v) belongs to F . Lemma B.4
below ensures that the centroid of the armgin set of f ∈ F , when viewed as a functional
from F to R, is a continuous mapping functional under the topology of epi-convergence. It
is similar in spirit to Lemma 3.1 of Lan et al. (2009), where they established the smallest and
largest argmin functionals are continuous mappings in the univariate Skorohod space, while
our result is under the metric induced by the epi-convergence in multivariate space.

LEMMA B.4. Given a compact space E for v, suppose that (i) on the domain E, the
sequence {fn ∈ F} epi-converges to f0 ∈ F and its jump process {f̃n} also epi-converges to
f̃0; (ii) there are finite numbers of jumps of {f̃n} and f̃0 in E; (iii) f0 has a unique level set.
Let Gn and G0 be the set in E on which fn and f0 are minimized, respectively. Then,∫

v1(v ∈Gn)dv∫
1(v ∈Gn)dv

→
∫
v1(v ∈G0)dv∫
1(v ∈G0)dv

, as n→∞. (B.27)

Let ℓ∞(B) be the space of all bounded functions equipped with the uniform norm on the
domain B, where B is the parameter space for β. The following lemma establishes the weak
convergence of WT in ℓ∞(B) and its asymptotic independence with DT .

LEMMA B.5. Under Assumptions 1-5, the sequence {WT }∞T=1 defined in (B.24) weakly
converges to W in ℓ∞(B), where for any u= (uT

1 , · · · ,uT

4)
T, W (u) =

∑4
k=1Wk(uk),

Wk(uk) = u
T

kE [XXT1{Z ∈Rk(γ0)}]uk − 2uT

kHk, (B.28)

Hk ∼N(0,Σk) and Σk = E
[
XXTε21{Z ∈Rk(γ0)}

]
. Furthermore, the random function

W (u) is independent of D(v) defined in (B.26).
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With the above Lemmas B.1–B.5, we are now ready to prove Theorem 3.3 as follows.

Proof of Theorem 3.3

PROOF. Let VT = T (γ̂ − γ0) with γ̂ ∈ Ĝ and UT =
√
T (β̂− β0) be standardizations of

the LSEs for γ0 and β0, respectively. By the definition of (γ̂, β̂),

(VT ,UT ) ∈argmin
(v,u)

[
TET

{
m(Wt,β0 +

u√
T
,γ0 +

v

T
)−m(Wt,β0,γ0)

}]
∈argmin

(v,u)
QT (v,u), (B.29)

where ET is the empirical average operator,QT (v,u) is defined in (B.22), v = (vT

1 ,v
T

2 )
T and

u = (uT

1 , · · · ,uT

4)
T. The proof includes the following three steps: (1) the separability and

finite-dimensional convergence of {QT (v,u)}∞T=1, (2) the epi-convergence of the random
functions {QT }∞T=1 to Q, and (3) the continuous mapping for the centroid of the argmin set.

Step 1. Separability and finite-dimensional convergence.

According to Lemma B.1, QT (v,u) can be separated as

QT (v,u) =WT (u) +DT (v) + op(1), (B.30)

uniformly for (uT,vT)T in any compact set of R4p+d1+d2 , where WT (u) and DT (v) are
defined in (B.24) and (B.25), respectively.

Let Q(v,u) =W (u) + D(v), where W (u) is defined in (B.24) and D(v) is given in
(B.26). Note that D(v) =D1(v1) +D2(v2), where

Dl(vl) =
∑

j,k∈S(l)

∞∑
i=1

ξ
(j,k)
i 1

{
s
(j)
l

(
J
(j,k)
i,l + (Z

(j,k)
l,i )Tv−1,l

)
≤ 0< s

(j)
l J

(j,k)
i,l

}
,

for l = 1 and 2. By Lemma B.2, for any finite positive integer k and (v(1), · · · ,v(k)) where
v(i) = (vT

(i),1,v
T

(i),2)
T ∈Rd1+d2 for each i ∈ {1, · · · ,4}, we have(
DT (v(1)), · · · ,DT (v(k))

) d−→
(
D(v(1)), · · · ,D(v(k))

)
, (B.31)

namely,D(v) is the finite-dimensional limiting distribution ofDT (v). The finite-dimensional
weak convergence of WT (u) to W (u) is implied by Lemma B.5. Therefore, QT (u,v)
weakly converges to Q(u,v) in the finite-dimensional sense.

Step 2. Epi-convergence.

Lemma B.3 establishes the stochastic equi-lower-semicontinuouity (s.e-l-sc) of the se-
quence {DT }∞T=1. From the regular form of {WT }∞T=1, this sequence of random functions
converges in distribution to W with respect to the topology of uniform convergence, imply-
ing {WT }∞T=1 epi-converge in distribution toW . Then by the finite-dimensional convergence
of {WT }∞T=1 implied from Lemma B.5 and Theorem 3 of Knight (1999), {WT }∞T=1 is a se-
quence of s.e-l-sc random functions. Consequently, {QT }∞T=1 are s.e-l-sc, which together
with the finite-dimensional weak convergence shown in Step 1 implies that {QT }∞T=1 epi-
converges in distribution to Q by Lemma A.9.
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For any given v, by the separatability of Q(u,v) = W (u) + D(v), where W (u)
is quadratic in u as shown in (B.28), we can see that Q(u,v) is minimized at U =
(U1, · · · ,U4)

T, where for k ∈ {1, · · · ,4},

Uk = E [XXT1{Z ∈Rk(γ0)}]−1Hk, Hk ∼N(0,Σk),

and Σk is given in Lemma B.5. By Theorem 1 of Knight (1999), we obtain
√
T (β̂ − β0) =

UT
d−→ U . Let GD be the argmin set of D(v). Since Assumption 3.(ii) implies that neither

Z1,t nor Z2,t is multicollinear, following the same arguments as in Yu and Fan (2021), it
can be shown GD is compact almost surely, so that its centroid is well defined. It is worth
noting that because the minimizers of D(v) are not unique, Theorem 1 of Knight (1999)
can not be directly applicable to imply the weak convergence of argminvDT (v) to that
of argminvD(v). Instead, we consider the centroid of argmin, which can be viewed as a
continuous functional of a process, to obtain the desired weak convergence in Theorem 3.3.

Step 3. Continuous mapping for the centroid of the argmin set.

Since {DT (v)}∞T=1 and D(v) can be endowed into a complete and separable metric space
induced by the epi-convergence, we can find a probability space and random elements with
D′
T (v)

d
= DT (v) for each T ≥ 1 and D′(v)

d
= D(v), such that D′

T (v) epi-converges to
D′(v) with probability 1 (van der Vaart and Wellner, 1996). Let Ĝ′ and G′

D be the argmin
sets of D′

T (v) and D′(v), respectively. Condition (i) of Lemma B.4 is ensured by the epi-
convergence of {D′

T (v)} to D′(v). Because the point process induced by {Tql,t} is asymp-
totic Poisson, there are stochastically finite number of jumps in any compact region, and
Condition (ii) Lemma B.4 holds with the probability approaching 1. Also, Condition (iii) is
ensured by the continuity of the jump size ξ(j,k)i of D(v). Applying Lemma B.4, we have
C(Ĝ′)→ C(G′

D), where C(E) denotes the centroid of any bounded set E. Hence, we con-

clude that T (γ̂c − γ0) = C(Ĝ) d−→ C(GD) = γcD . Finally, the asymptotic independence be-
tween

√
T (β̂ − β0) and T (γ̂c − γ0) is implied by the independence between W (u) and

D(v) established in Lemma B.5. Because T (γ̂c1 − γ10) and T (γ̂c2 − γ20) depend asymptoti-
cally on D1(v) and D2(v), respectively, which are shown to be independent in Part 3 of the
proof of Lemma B.2, the asymptotic independence between T (γ̂c1 − γ10) and T (γ̂c2 − γ20)
follows.

B.6. Proof of Lemma B.1.

PROOF. First, the left-hand of (B.23) admits the following decomposition:

TET {m(Wt,β0 +
u√
T
,γ0 +

v

T
)−m(Wt,β0,γ0)}

=

4∑
j=1

T∑
t=1

(uT

j

XtX
T

t

T
uj −uT

j

2√
T
Xtεt)1

(j)
t (γ0)1

(j)
t (γ0 +

v

T
)

+

4∑
i ̸=j

T∑
t=1

{(δij,0 −
uj√
T
)TXtX

T

t (δij,0 −
uj√
T
) + 2XT

t (δij,0 −
uj√
T
)εt}1(i)

t (γ0)1
(j)
t (γ0 +

v

T
)

=

4∑
j=1

Hj(h) +

4∑
i ̸=j

Fij(h), say. (B.32)
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For the Hj term, let Rj,t = uT

jXtX
T

t uj1
(j)
t (γ0), by the ULLN in Lemma A.1,

(ET −E){Rj,t1(j)
t

(
γ0 +

v

T

)
}= op(1). (B.33)

Note that

E{
∣∣∣Rj,t1(j)

t (γ0 +
v

T
)−Rj,t

∣∣∣}
≤

2∑
l=1

E{Rj,t|1l,t(γl0)− 1l,t(γl0 +
vl
T
)|}

(i)

≲
∑2

l=1 ‖vl‖
T

= o(1), (B.34)

where (i) is implied by Lemma A.2. Then, combining (B.33) and (B.34) yields
T∑
t=1

uT

j

XtX
T

t

T
uj1

(j)
t (γ0)1

(j)
t

(
γ0 +

v

T

)
=ET

{
Rj,t1

(j)
t

(
γ0 +

v

T

)}
=E(Rj,t) + op(1) =

4∑
j=1

uT

jE
{
XtX

T

t 1
(j)
t (γ0)

}
uj + op(1). (B.35)

For the second part of Hj(h), let Sj,t = 2uT

jXtεt1
(j)
t (γ0). Note that

√
TET

[
Sj,t

{
1
(j)
t

(
γ0 +

v

T

)
− 1

(j)
t (γ0)

}]
≤

2∑
l=1

√
TET

{
|Sj,t|

∣∣∣1l,t(γl0)− 1l,t(γl0 +
vl
T
)
∣∣∣}= op(1),

according to (A.20) in Lemma A.5. Hence, applying Lemma A.5 gives
√
TET

{
Sj,t1

(j)
t

(
γ0 +

v

T

)}
=
√
TET

{
Sj,t1

(j)
t (γ0)

}
+ op(1). (B.36)

Combining (B.35) and (B.36) and summing across j = 1, · · · ,4 leads to
4∑
j=1

Hj(h) =WT (u) + op(1). (B.37)

For the Fij(h) terms (i 6= j ∈ {1, · · · ,4}) in (B.32), we divide them into two cases ac-
cording to whether there exists l ∈ {1,2} such that (i, j) ∈ S(γl0) or not. For those (i, j) that
does not have l ∈ {1,2} such that (i, j) ∈ S(l), i.e., s(i)1 6= s

(j)
1 and s(i)2 6= s

(j)
2 ,

1
(i)
t (γ0)1

(j)
t

(
γ0 +

v

T

)
≤
∣∣∣11,t(γl0)− 11,t

(
γ10 +

v1
T

)∣∣∣ ∣∣∣12,t(γh0)− 12,t

(
γ20 +

v2
T

)∣∣∣ .
Then, applying (A.21) in Lemma A.5, where we define Ut in Lemma A.5 as∣∣∣∣(δij,0 − uj√

T
)TXtX

T

t (δij,0 −
uj√
T
) + 2XT

t (δij,0 −
uj√
T
)εt

∣∣∣∣ ,
yields that

Fij(h) = op(1), if (i, j) /∈ S(l) for any l ∈ {1,2} . (B.38)

Otherwise, if there exists l ∈ {1,2} such that (i, j) ∈ S(l),

Fij(h) = TET {ξ(i,j)t 1
(i)
t (γ0)1

(j)
t (γ0 +

v

T
)}+

√
TET {T (i,j)

t 1
(i)
t (γ0)1

(j)
t (γ0 +

v

T
)}
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+ET {U (i,j)
t 1

(i)
t (γ0)1

(j)
t (γ0 +

v

T
)}+

√
TET {V (i,j)

t 1
(i)
t (γ0)1

(j)
t (γ0 +

v

T
)}, (B.39)

where ξ(i,j)t is defined in (B.25), and

T
(i,j)
t = δT

ij,0XtX
T

t uj , U
(i,j)
t = uT

jXtX
T

t uj and V (i,j)
t =−2XT

t ujεt.

For the first term on the right-hand side of (B.39), we note that 1(i)
t (γ0)1

(j)
t

(
γ0 +

v
T

)
= 1

means that Zt is classified into Ri(γ0) under the true γ0, but is classified into Rj(γ) under
the candidate parameter γ. Since the i-th and the j-th regions are on the opposite sides of
the l-th hyperplane, while are on the same side of the h-th hyperplane for the h 6= l ∈ {1,2},
we have the following two implications: (i) sign(ZT

l,tγl0) 6= sign
{
ZT

l,t

(
γl0 +

vl

T

)}
, which is

equivalent to

1
{
s
(i)
l Z

T

l,t

(
γl0 +

vl
T

)
≤ 0< s

(i)
l Z

T

l,tγl0

}
= 1;

and (ii) sign(ZT

h,tγh0) = sign
{
ZT

h,t

(
γh0 +

vh

T

)}
for h 6= l ∈ {1,2}, which is equivalent to

1
{
0<min{s(i)h Z

T

h,tγh0, s
(i)
h Z

T

h,t

(
γh0 +

vh
T

)
}
}
= 1.

For (i, j) ∈ S(l), let 1(i,j)
t (γ0) = 1

(i)
t (γ0) + 1

(j)
t (γ0). It is noted that∣∣∣1(i,j)

t (γ0)1
(j)
t (γ0 +

v

T
)− 1

(i,j)
t (γ0)1l,t{s

(i)
l Z

T

l,t(γl0 +
vl
T
)≤ 0< s

(i)
l Z

T

l,tγl0}
∣∣∣

≤
∣∣∣11,t(γ10)− 11,t(γ10 +

v1
T
)
∣∣∣ ∣∣∣12,t(γ20)− 12,t(γ20 +

v2
T
)
∣∣∣ . (B.40)

Applying (A.21) in Lemma A.5, we have

TET
{
|ξ(i,j)t |

∣∣∣11,t(γ10)− 11,t

(
γ10 +

v1
T

)∣∣∣ ∣∣∣12,t(γ20)− 12,t

(
γ20 +

v2
T

)∣∣∣}= op(1),

which, together with (B.40), implies that

TET
{
ξ
(i,j)
t 1

(i)
t (γ0)1

(j)
t

(
γ0 +

v

T

)}
=TET

{
ξ
(i,j)
t 1l,t

{
s
(i)
l Z

T

l,t

(
γl0 +

vl
T

)
≤ 0< s

(i)
l Z

T

l,tγl0

}}
+ op(1)

=TET
{
ξ
(i,j)
t 1l,t

{
s
(i)
l

(
Tql,t +Z

T

l,tvl
)
≤ 0< s

(i)
l Tql,t

}}
+ op(1)

=D
(i,j)
T (v) + op(1), say, (B.41)

where in the second equality ql,t =ZT

l,tγ0.
For the second term of (B.39), note that∣∣∣T (i,j)

t 1
(i)
t (γ0)1

(j)
t

(
γ0 +

v

T

)∣∣∣≤ ∣∣∣T (i,j)
t

∣∣∣ ∣∣∣1l,t(γl0)− 1l,t(γl0 +
vl
T
)
∣∣∣ .

According to (A.20) in Lemma A.5, it holds that
√
TET

{
T
(i,j)
t 1

(i)
t (γ0)1

(j)
t

(
γ0 +

v

T

)}
= op(1). (B.42)

With the same arguments, we have

ET
{
U

(i,j)
t 1

(i)
t (γ0)1

(j)
t

(
γ0 +

v

T

)}
= op(1), (B.43)
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√
TET

{
V

(i,j)
t 1

(i)
t (γ0)1

(j)
t

(
γ0 +

v

T

)}
= op(1). (B.44)

Finally, combining (B.39) and the four parts (B.41)–(B.44) yields

Fij(h) =D
(i,j)
T (v) + op(1), if there exists l ∈ {1,2} such that (i, j) ∈ S(l). (B.45)

Since QT (u,v) =
∑4

j=1Hj(h) +
∑4

i ̸=j Fij(h) as shown in (B.32), using (B.37) for the
Hj(h) terms, and (B.38) and (B.45) for the Fij(h) terms, the desired result (B.23) for the
decomposition of QT (u,v) is obtained.

B.7. Proof of Lemma B.2.

PROOF. For notational simplicity, in this proof, we show the marginal weak convergence
of DT (v), i.e., DT (v)

d−→ D(v) for any fixed v, since the finite-dimensional weak conver-
gence can be easily extended with the similar argument but more involved notations. Specifi-
cally, to show that

(
DT (v(1)), · · · ,DT (v(m))

) d−→
(
D(v(1)), · · · ,D(v(m))

)
for any finite inte-

germ, it suffices to replace the mapping T (j,k)
l,vl

defined in (B.47) associated with the marginal

v = (vT

1 ,v
T

2 )
T to a m-dimensional mapping (T (j,k)

l,v(1),l
, · · · ,T (j,k)

l,v(m),l
) for each l ∈ {1,2} and

(j, k) ∈ S(l).
The proof is divided to four parts. In Part 1 we express DT as a functional of point pro-

cesses. Part 2 first establishes the weak limit of the empirical point process, by verifying
Meyer’s condition which ensures the asymptotical Poisson for the point process with the
mixing sequences. Then we construct an explicit representation of the limiting process. Part
3 shows the asymptotical independence of the point processes associated with different split-
ting hyperplanes. In Part 4, we employ a continuous mapping theorem for the functional
introduced in Part 1 to obtain the weak convergence of DT (v).

Part 1: Transformation into a functional of point processes. In this part, we will express
DT (v) as a sum of transformations of point processes.

Recall that

DT (v) =

2∑
l=1

T∑
t=1

∑
(j,k)∈S(l)

ξ
(j,k)
t 1

{
s
(j)
l

(
Tql,t +Z

T

−1,l,tv−1,l

)
≤ 0< s

(j)
l Tql,t

}
,

where ξ
(j,k)
t =

(
δT

jk,0XtX
T

t δjk,0 + 2XT

t δjk,0εt
)
{1(j)

t (γ0) + 1
(k)
t (γ0)}.

We now show that DT (v) can be written as a sum of functionals of some empirical point
processes. For each l ∈ {1,2} and (j, k) ∈ S(l), we define an empirical point process N̂(j,k)

l,T ∈
Mp(El), which is the space of Radon point measures defined in Definition A.2, where El =
Rs(j)l

×Z−1,l ×R, as

N̂
(j,k)
l,T (F ) :=

T∑
t=1

1
{
(Tql,t,Z−1,l,t, ξ

(j,k)
t ) ∈ F

}
for anyF = (F1,F2,F3) ∈El, (B.46)

where Rs(j)l
= (0,∞) if s(j)l = 1, and Rs(j)l

= (−∞,0] if s(j)l = −1. The element {0} is

excluded from the space of ξ(j,k)t since ξ(j,k)t = 0 does not affect DT (v).
For a given v = (vT

1 ,v
T

2 )
T, for each l ∈ {1,2} and (j, k) ∈ S(l), we define a map T (j,k)

l,vl
:

Mp(El)→R such that

∀ N ∈Mp(E) : T (j,k)
l,vl

(N) =

∫
El

g
(j,k)
l,vl

(x,y, z)dN(x,y, z), (B.47)
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where for each x ∈Rs(j)l
,y ∈Z−1,l and z ∈R,

g
(j,k)
l,vl

(x,y, z) = z · 1
{
s
(j)
l (x+ yTv−1,l)≤ 0< s

(j)
l x
}
.

Then, with (B.46) and (B.47) we can write
T∑
t=1

ξ
(j,k)
t 1

{
s
(j)
l

(
Tql,t +Z

T

−1,l,tv−1,l

)
≤ 0< s

(j)
l Tql,t

}
= T (j,k)

l,vl

(
N̂

(j,k)
l,T

)
.

Consequently, DT (v) can be expressed as

DT (v) =

2∑
l=1

∑
(j,k)∈S(l)

T (j,k)
l,vl

(
N̂

(j,k)
l,T

)
. (B.48)

Part 2: Weak limit of N̂
(j,k)
l,T . In this part, we derive the weak limit of the empirical

point process N̂
(j,k)
l,T for each l ∈ L and (j, k) ∈ Sl in three steps. In step 1, we calculate

limT→∞E
{
N̂

(j,k)
l,T (F )

}
to obtain the mean measure of the limit process N

(j,k)
l required in

(A.26) in Kallenberg’s theorem (Lemma A.7). In the next step, we first verify Conditions
(a)-(c) of Meyer’s theorem (Lemma A.8), and then use it to show (A.27). The above two
steps guarantee that the empirical point process N̂

(j,k)
l,T weakly converges to a Poisson pro-

cess N(j,k)
l . In the final step, we will find an explicit representation of N(j,k)

l .

Step 1: Calculation of the limit of E
{
N̂

(j,k)
l,T (F )

}
.

For any F = (F1,F2,F3) ∈ El, which is the basis of relatively compact open set in El,
where F1 ⊂Rs(j)l

and F2 ⊂Z−1,l,F3 ⊂R, we have

lim
T→∞

E
{
N̂

(j,k)
l,T (F )

}
= lim
T→∞

TP
{(
Tql,t,Z−1,l,t, ξ

(j,k)
t

)
∈ F

}
= lim
T→∞

T

∫
Tq∈F1,z∈F2,ξ∈F3

fξ(j,k)|(ql,Z−1,l)(ξ|q,z)fql|Z−1,l
(q|z)fZ−1,l

(z)dqdzdξ

(i)
= lim
T→∞

∫
q̃∈F1,z∈F2,ξ∈F3

fξ(j,k)|(ql,Z−1,l)(ξ |
q̃

T
,z)fql|Z−1,l

(
q̃

T
| z)fZ−1,l

(z)dq̃dzdξ

(ii)
=

∫
q̃∈F1,z∈F2,ξ∈F3

fξ(j,k)|(ql,Z−1,l)(ξ | 0,z)fql|Z−1,l
(0 | z)fZ−1,l

(z)dq̃dzdξ

=: µ
(j,k)
l (F )<∞, (B.49)

where (i) is by letting q = q̃/T , (ii) is by the dominating convergence theorem and the conti-
nuity of fql|Z−1,l

(q|z) and fξ(j,k)|(ql,Z−1,l) (ξ | q,z) at q = 0, and that µ(j,k)l (F )<∞ is because
of the uniform boundness of the density functions assumed in Assumption 5 and the com-
pactness of F . The measure µ(j,k)l on El =Rs(j)l

×Z−1,l ×R is defined as

µ
(j,k)
l (dq,dz,dξ) = fξ(j,k)|(ql,Z−1,l) (ξ | 0,z)fql|Z−1,l

(0 | z)fZ−1,l
(z)dqdzdξ. (B.50)
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Suppose that µ(j,k)l defined above is the mean measure of the point process N
(j,k)
l , then

(B.49) verifies the condition (A.26) required in Lemma A.7. To verify the other condition
(A.27), we use Meyer’s theorem, whose requirements are listed in (a)-(c) in Lemma A.8 and
are verified as follows.

Step 2: Verification of the conditions of Meyer’s theorem.

To show limT→∞ P
{
N̂

(j,k)
l,T (F ) = 0

}
= P

{
N̂

(j,k)
l (F ) = 0

}
, we now employ the Meyer’s

theorem presented in Lemma A.8. The following notations are the same as used in Lemma
A.8. For any F = (F1,F2,F3) ∈El and any sample size n≥ 1, define the sequence of “rare”
events as

Ant (F ) = 1
{
(nql,t,Z−1,l,t, ξ

(j,k)
t ) ∈ F

}
,

for 1≤ t≤ n(n= 1,2, · · · ). For any m> 0, we take qm = [Lm]q and pm = [Lm]p for some
L ≥ 1 and p ≥ q ≥ 1, where [x] denotes the largest interger not greater than x. Then tm =
m(qm+pm) =m ([Lm]q + [Lm]p). We illustrate the validity of Conditions (a)-(c) of Lemma
A.8 as follows:

It is noted that Condition (a) is ensured by the condition of geometrical decaying α-mixing
coefficient imposed in Assumption 1. Furthermore, Condition (b) is valid, since qm = [Lm]q

and pm = [Lm]p for some constants L ≥ 1 and p ≥ q > 1, leading to pm+1/pm → 1 and
qm/pm → 0 as m→∞. Finally, for Condition (c), we note that

t2mIpm = t2m

pm−i∑
i=1

(pm − i)P
{
Atm1 (F )∩Atmi+1(F )

}
≤ t2mpm

pm−i∑
i=1

P
{
Atm1 (F )∩Atmi+1(F )

}
≤ t2mpm

pm−i∑
i=1

P{(tmql,1 ∈ F1)∩ (tmql,i+1 ∈ F1)}

(iii)

≲ t2mp
2
m {P (tmql,1 ∈ F1)}2

= t2mp
2
m

(∫
tmq∈F1

dFql(q)

)2

(iv)
= t2mp

2
m

(∫
tmq∈F1,z∈Z−1,l

fql|Z−1,l
(q|z)fZ−1,l

(z)dqdz

)2

(v)
= p2m

(∫
q∈F1,z∈Z−1,l

fql|Z−1,l
(0|z)fZ−1,l

(z)dqdz + o(1)

)2
(vi)

≤ Cp2m (B.51)

for some positive constant C , where Fql(q) is the distribution function of ql =ZT

l γl0. In the
above derivation, (iii) is from Assumption 5 (i), (iv) is by conditioning ql,1 on Z−1,l, (v) is
obtained via the same arguments of (i) and (ii) used in deriving (B.49), and (vi) is because
fql|Z−1,l

is bounded with probability 1 by Assumption 5 (ii) and the compactness of F1.
Consequently, (B.51) implies that as m→∞,

Ipm ≤C
p2m
t2m

=C
p2m

m2(pm + qm)2
≤C

1

m2
= o

(
1

m

)
,
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which verifies Condition (c) in Lemma A.8.
With Conditions (a)-(c) verified and P(ATt (F )) = µ

(j,k)
l (F )/T + o(1/T ) as shown in de-

riving (B.49), for any F with µ(j,k)l (F )> 0, Meyer’s theorem implies that

lim
T→∞

P
{
N̂

(j,k)
l,T (F ) = 0

}
= lim
T→∞

P
{

none of
{
ATt (F )

}T
t=1

occurs
}

=e−µ
(j,k)
l (F ) = P

{
N

(j,k)
l (F ) = 0

}
, (B.52)

where N
(j,k)
l is a Poisson process with mean measure µ(j,k)l . For F with µ

(j,k)
l (F ) = 0,

(B.52) also holds, since in such case (B.49) implies E
{
N̂

(j,k)
l,T (F )

}
→ 0 as T →∞, which

further implies that P
{
N̂l,T (F ) = 0

}
= 1 = e−µ

(j,k)
l (F ) = P

{
N

(j,k)
l (F ) = 0

}
. With (B.52)

and (B.49), Kallenberg’s theorem (Lemma A.7) implies that for each l ∈ {1,2} and (j, k) ∈
S(l), N̂(j,k)

l,T ⇒N
(j,k)
l in Mp(El) as T →∞.

Step 3. Representation of N(j,k)
l .

In this step, we construct a representation of N
(j,k)
l by applying the marking theorem

(Proposition 3.8 of Resnick, 2008) twice. First, let N(j,k)
1,l be a canonical Poisson process on

Rs(j)l
on points {J (j,k)

l,i }∞i=1 defined as

N
(j,k)
1,l (·) =

∞∑
i=1

1
{
J (j,k)
l,i ∈ ·

}
, J (j,k)

l,i = s
(j)
l

i∑
n=1

E(j,k)
l,n , (B.53)

where
{
E(j,k)
l,n

}∞

n=1
is an i.i.d. sequence of unit-exponential variables. Then N

(j,k)
1,l has the

mean measure µ(j,k)1,l (dq) = dq on Rs(j)l
. Let {Z(j,k)

l,i }∞i=1 be an i.i.d. sequence which follows

the distribution FZ−1,l
and is independent of

{
E(j,k)
l,n

}∞

n=1
. Then the marking theorem implies

the composed process

N
(j,k)
2,l (·) =

∞∑
i=1

1
{(

J (j,k)
l,i ,Z

(j,k)
l,i

)
∈ ·
}

is a Poisson process with the mean measure µ(j,k)2,l (dq, dz) = dq · fZ−1,l
(z)dz on Rs(j)l

×
Z−1,l. Let Tl : (q,z)→ (q/fq|Z−1,l

(0|z),z). Then by Proposition 3.7 in Resnick (2008),

N
(j,k)
3,l (·) =

∞∑
i=1

1
{
Tl
(
J (j,k)
l,i ,Z

(j,k)
l,i

)
∈ ·
}
=

∞∑
i=1

1


 J (j,k)

l,i

fq|Z−1,l
(0|Z(j,k)

l,i )
,Z

(j,k)
l,i

 ∈ ·


is a Poisson process with the mean measure

µ
(j,k)
3,l (dq, dz) = µ

(j,k)
2,l ◦ T −1

l (dq, dz) = fql|Z−1,l
(0|z)dq · fZ−1,l

(z)dz (B.54)

on Rs(j)l
× Z−1,l. Finally, let F (j,k)

l (·|z) be the conditional distribution function of ξ(j,k)

given ql = 0 and Z−1,l = z, which makes its density function be fξ(i,j)|(ql,Z−1,l) (ξ | 0,z). Let

{ξ(j,k)i }∞i=1 be an i.i.d. sequence follows the conditional distribution F (j,k)
l (·|Z(j,k)

l,i ). Then by
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applying again Proposition 3.7 in Resnick (2008), the composed point process

N
(j,k)
l (·) =

∞∑
i=1

1


 J (j,k)

l,i

fq|Z−1,l
(0|Z(j,k)

l,i )
,Z

(j,k)
l,i , ξ

(j,k)
i

 ∈ ·

 (B.55)

is a Poisson process with the mean measure

µ
(j,k)
l (dq, dz, dξ) = µ

(j,k)
3,l (dq, dz)F

(j,k)
l (dξ|z)

= fξ(i,j)|(ql,Z−1,l) (ξ | 0,z)fql|Z−1,l
(0 | z)fZ−1,l

(z)dqdzdξ,

which matches the desired mean measure (B.50).
In summary, through Steps (I)-(III) we derive that for each l ∈ {1,2} and (j, k) ∈ S(l), it

holds that N̂(j,k)
l,T ⇒N

(j,k)
l in Mp(El) as T →∞, where N

(j,k)
l is a Poisson point process

with the representation (B.55).

Part 3: Asymptotical independence of point processes.

We now show that the empirical point processes
{
N̂

(j,k)
l,T , l ∈ {1,2}, (j, k) ∈ S(l)

}
are

asymptotically independent, that is, for any compact sets {F (j,k)
l ∈ El, l ∈ {1,2}, (j, k) ∈

S(l)} and non-negative integers {k(j,k)l , l ∈ {1,2}, (j, k) ∈ S(l)}, it holds that

P

 ⋂
(l,j,k)∈Is

(
N̂

(j,k)
l,T (F

(j,k)
l ) = k

(j,k)
l

)
→

∏
(l,j,k)∈Is

exp
(
−µ(j,k)l (F

(j,k)
l )

){
µ
(j,k)
l (F

(j,k)
l )

}k(j,k)
l

k
(j,k)
l !

, (B.56)

as T →∞, where Is is any subset of I = {(l, j, k) : l ∈ {1,2}, (j, k) ∈ S(l)}.
Suppose that |Is| = n,1 ≤ n ≤ |I|. For notational simplicity, we label the n triples{(
N̂

(j,k)
l,T ,F

(j,k)
l , k

(j,k)
l

)
, (l, j, k) ∈ Is

}
as
{
(N̂i,T ,Fi, ki),1≤ i≤ n

}
, and define

ĈT =

n∑
i=1

N̂i,T (Fi) =

T∑
t=1

n∑
i=1

1{(Tqi,t,Z−1,i,t, ξi) ∈ Fi}=:

T∑
t=1

Ĉt, say. (B.57)

Let ATi,t be the event {(Tqi,t,Z−1,i,t, ξi) ∈ Fi,t} and BT
t =

⋃n
i=1A

T
i,t, namely BT

t occurs if
and only if at least one of {Ai,t}ni=1 occurs. The derivation for (B.56) includes two steps.
First, we calculate limT→∞ P(ĈT = k), for which we show P(ATi,t ∩ ATi′,t) = O(T−2) as

T →∞. In the second step, we calculate limT→∞ P
{⋂n

i=1

(
N̂i,T (Fi) = ki

)
| ĈT = k

}
with∑n

i=1 ki = k, using the arguments of thinning and blocking.

Step 1. In this step, we first show that for each 1 ≤ t ≤ T , the distinct events ATi,t and ATi′,t
cannot happen together asymptotically. Suppose that

ATi,t =
{
(Tql,t,Z−1,l,t, ξ

(j,k)
t ) ∈ Fi = F1,i × F2,i × F3,i

}
and

ATi′,t =
{
(Tql′,t,Z−1,l′,t, ξ

(j′,k′)
t ) ∈ Fi′ = F1,i′ × F2,i′ × F3,i′

}
, (B.58)
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respectively. First, consider the case that l= l′ and (j, k) 6= (j′, k′). We notice that since both
(j, k) and (j′, k′) belong to S(l), then either (i) j = k′ and j′ = k or (ii) {j, k} ∩ {j′, k′}= ∅.
Under (i) we have P(Tql,t ∈ F1,i ∩ F1,i′) = 0, since F1,i ⊂ Rsjl and F1,i′ ⊂ Rskl , while sjl =

−skl . Also, since ξ(j,k)t ξ
(j′,k′)
t = 0 under (ii), P(ξ(j,k)t ∈ F3,i, ξ

(j′,k′)
t ∈ F3,i′) = 0. In summary,

P(ATi,t ∩ATi′,t) = 0 if l= l′ and (j, k) 6= (j′, k′).
On the other hand, if l 6= l′

P(ATi,t ∩ATi′,t) =P
({

(Tql,t,Z−1,l,t, ξ
(j,k)
t ) ∈ Fi

}
∩
{
(Tql′,t,Z−1,l′,t, ξ

(j′,k)
t ) ∈ Fi′

})
≤P ({Tql,t ∈ F1,i} ∩ {Tql′,t ∈ F1,i′})

=EZ−1,l,Z−1,l′

{∫
Tq∈F1,i,T q′∈F1,i′

f(ql,ql′ )|(Z−1,l,Z−1,l′ )(q, q
′)dqdq′

}

=
1

T 2
EZ−1,l,Z−1,l′

{∫
q̃∈F1,i,q̃′∈F1,i′

f(ql,ql′ )|(Z−1,l,Z−1,l′ )

(
q̃

T
,
q̃′

T

)
dq̃dq̃′

}
=O(T−2) as T →∞. (B.59)

Therefore, we obtain that P(ATi,t ∩ATi′,t) =O(T−2) as T →∞ if i 6= i′.
Note that by the inclusion-exclusion principle,

P(BT
t ) =P

(
n⋃
i=1

ATi,t

)

=

n∑
i=1

P(ATi,t) +
n∑
k=2

(−1)k+1
∑

1≤i1<···<ik≤n
P(ATi1 ∩ · · · ∩ATik). (B.60)

Because P(ATi1 ∩ · · · ∩ATik)≤ P(ATi1 ∩A
T
i2
), from (B.59) and (B.60) it yields that

P(BT
t ) =

n∑
i=1

P(ATi,t) +O(T−2). (B.61)

From (B.49) we have

P(ATi,t) = µi(Fi)/T + o(T−1), (B.62)

which implies that

P(BT
t ) =

n∑
i=1

µi(Fi)/T + o(T−1). (B.63)

With the similar arguments used in Step 2 of Part 2, we can verify the conditions for Meyer’s
theorem for

{
BT
t

}T
t=1

, which delivers that for any 0≤ k ≤ T ,

P
{

exactly k of
{
BT
t

}T
t=1

occur
}
→

exp (−
∑n

i=1 µi(Fi)){
∑n

i=1 µi(Fi)}
k

k!
,

as T →∞. We notice that{
ĈT = k

}
/
{

exactly k of
{
BT
t

}T
t=1

occur
}
⊂
{

for some 1≤ t≤ T, Ĉt ≥ 2
}

and
T∑
t=1

P(Ĉt ≥ 2)≤
T∑
t=1

∑
1≤i ̸=i′≤n

P(ATi1 ∩A
T
i2) =O(nT−1),
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where n is finite, since it is the cardinality of Is. Hence, we obtain

P(ĈT = k) = P
{

exactly k of
{
BT
t

}T
t=1

occur
}
+ o(1)

→
exp (−

∑n
i=1 µi(Fi)){

∑n
i=1 µi(Fi)}

k

k!
, as T →∞. (B.64)

Step 2. Now we turn to calculate P
{⋂n

i=1

(
N̂i,T (Fi) = ki

)}
. Let k =

∑n
i=1 ki. Note that

P

{
n⋂
i=1

(
N̂i,T (Fi) = ki

)}

=P
(
ĈT = k

)
P

{
n⋂
i=1

(
N̂i,T (Fi) = ki

)
| ĈT = k

}

=P
(
ĈT = k

)[
P

{
n⋂
i=1

(
ki of

{
ATi,t
}T
t=1

are assigned
)
| k of

{
BT
t

}T
t=1

occur

}
+ o(1)

]
=:P1,T × P2,T + o(1), say.

For P1,T , by (B.64) we have

P1,T →
exp (−

∑n
i=1 µi(Fi)){

∑n
i=1 µi(Fi)}

∑n
i=1 ki

(
∑n

i=1 ki)!
, (B.65)

as T → ∞. We now proceed to obtain the limits of P2,T by the blocking argument as in
Meyer (1973).

Specifically, for any positive integer m, partition the observation indices into consecu-
tive blocks of pm and qm alternately, where pm and qm are the same as those in Step (2)
of Part 2, beginning with the initial block {1, · · · , pm}. Let Pm and Qm denote those in-
dices falling into size pm and qm blocks, respectively, and tm =m(pm + qm). Let Ii,tmt ={
Atmi,t happens if Btm

t happens
}

. According to (B.62) and (B.63),

P(Ii,tmt ) =P(Atmi,t |B
tm
t ) =

P(Atmi,t ∩B
tm
t )

P(Btm
t )

=
P(Atmi,t )
P(Btm

t )

=
µi(Fi)∑n
i=1 µi(Fi)

+ o(1) =: pi + o(1), say,

as m→∞.
Let Gk = {Gk = {js}ks=1 : 1 ≤ j1 ≤ · · · ≤ jk ≤ tm} be the collection of the subsets of

{1, · · · , tm} with the cardinality k. Then,{
k of

{
Btm
t

}T
t=1

occur
}
= ∪Gk∈Gk

{Btm
t occur iff t ∈Gk}, (B.66)

where “iff” is short for “if and only if”. For each Gk = {js}ks=1 ∈ Gk, let

H(Gk) = {(Hi = {jis}kis=1)
n
i=1 : ∪ni=1Hi =Gk and Hi ∩Hi′ = ∅ if i 6= i′}

be the collection of all possible n-partitions ofGk with each segmentHi containing ki indices
of Gk. Then we note that |H(Gk)|= k!/(

∏n
i=1 ki!).

P{∩ni=1(ki of {Atmi,t }
tm
t=1 are assigned) |Btm

t occur iff t ∈Gk}
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=
∑

(Hi)ni=1∈H(Gk)

P(∩ni=1 ∩
ki
s=1 I

i,tm
jis

). (B.67)

By inspecting the proof of Theorem 1 of Meyer (1973), we find that if k of
{
Btm
t

}tm
t=1

hap-
pens, then asymptotically all the k indices lie in separate blocks in Pm, implying that any
|j − j′| ≥ qm for any j 6= j′ ∈Gk. Therefore, for large enough m, we have∣∣∣∣∣P(∩ni=1 ∩

ki
s=1 I

i,tm
jis

)−
n∏
i=1

ki∏
s=1

P(Ii,tmjis
)

∣∣∣∣∣≤ kαtm(qm),

by applying the definition of the α-mixing coefficients repeatedly for k times. Since
|H(Gk)|= k!/(

∏n
i=1 ki!) and P(Ii,tmjis

) = pi + o(1), we obtain∣∣∣∣∣∣
∑
C∗

P(
⋂

i∈[n],t∈[ki]

Ii,tmjt
)− k!∏n

i=1 ki!

n∏
i=1

pkii + o(1)

∣∣∣∣∣∣≤ k
k!∏n
i=1 ki!

αtm(qm) = o(1), (B.68)

where the last equality is due to that k is a given integer and αtm(qm) → 0 as m→ ∞.
Combining (B.67) and (B.68) leads to

P{∩ni=1(ki of {Atmi,t }
tm
t=1 are assigned) |Btm

t occur iff t ∈Gk}=
k!∏n
i=1 ki!

n∏
i=1

pkii + o(1),

for each Gk ∈ Gk. This together with (B.66) yields that

P2,tm =
k!∏n
i=1 ki!

n∏
i=1

pkii + o(1), as m→∞,

where P2,tm = P{∩ni=1(ki of {Atmi,t }
tm
t=1 are assigned) | k of

{
Btm
t

}tm
t=1

occur}. Since for any
T , there exists a m such that T ∈ [tm, tm+1), the above result implies that

P2,T → k!∏n
i=1 ki!

n∏
i=1

pkii + o(1) =
(
∑n

i=1 ki)!∏n
i=1 ki!

n∏
i=1

{
µi(Fi)∑n
i=1 µi(Fi)

}ki
, as T →∞, (B.69)

since k =
∑n

i=1 ki and pi = µi(Fi)/(
∑n

i=1 µi(Fi)). Combining (B.65) with (B.69) yields
that

P

{
n⋂
i=1

(
N̂i,T (Fi) = ki)

)}
= P1,TP2,T + o(1) =

n∏
i=1

exp (−µi(Fi)){µi(Fi)}ki

ki!
+ o(1),

which proves (B.56) and implies that
(
N̂

(j,k)
l,T , l ∈ {1,2}, (j, k) ∈ S(l)

)
are asymptotically

independent. These together with Part 2 conclude that N̂(j,k)
l,T ⇒N

(j,k)
l inMp(El) as T →∞,

where
(
N

(j,k)
l , l ∈ {1,2}, (j, k) ∈ S(l)

)
are independent Poisson point processes with the

representation (B.55).

Part 4: Continuous mapping.

In this part, we show that T (j,k)
l,vl

(
N̂

(j,k)
l,T

)
d−→ T (j,k)

l,vl

(
N

(j,k)
l

)
as T → ∞. If T (j,k)

l,vl
(·) is

a continuous functional in Mp(El), then it follows by the continuous mapping thoerem. To
show that T (j,k)

l,vl
(·) is continuous mapping from Mp(El) to R, we use Proposition 3.13 in
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Resnick (2008), which requires T (j,k)
l,vl

(·) has a compact support. Therefore, we use a trunca-
tion argument. Recall that for any N ∈Mp(E),

T (j,k)
l,vl

(N) =

∫
El

g
(j,k)
l,vl

(x,y, z)dN(x,y, z),

where x ∈Rs(j)l
,y ∈Z−1,l, z ∈R, and

g
(j,k)
l,vl

(x,y, z) = z · 1
{
s
(j)
l (x+ yTv−1,l)≤ 0< s

(j)
l x
}
.

Therefore, the support of T (j,k)
l,vl

is Q(j)
l ×Z−1,l ×R, where Q(j)

l = {q : s(j)l (q + yTv−1,l)≤
0< s

(j)
l q for some y ∈Z−1,l}, which is compact since Z−1,l is compact. For any M > 0, we

let El,M =
{
(x,y, z) : x ∈Rs(j)l

,y ∈Z−1,l, |z|<M
}

, which is a compact set. Let

RT = T (j,k)
l,vl

(
N̂

(j,k)
l,T

)
=

∫
El

g
(j,k)
l (x,y, z)dN̂

(j,k)
l,T (x,y, z),

RT,M =

∫
El,M

g
(j,k)
l (x,y, z)dN̂

(j,k)
l,T (x,y, z),

R0,M =

∫
El,M

g
(j,k)
l (x,y, z)dN

(j,k)
l,T (x,y, z) and

R0 = T (j,k)
l,vl

(
N

(j,k)
l,T

)
=

∫
El

g
(j,k)
l (x,y, z)dN

(j,k)
l,T (x,y, z).

In the following, we show in three steps that (i)RT,M
d−→R0,M for any fixedM > 0 as T →

∞ by the continuous mapping theorem, (ii) limM→∞ limsupT→∞ P{|RT −RT,M |> ε}→
0 for any ε > 0, and (iii)R0,M

d−→R0 asM →∞. Then by Theorem 4.2 of Billingsley (1968),

RT
d−→R0 as T →∞.

Step (1). For any fixed M > 0, let M(j,k)
l,vl

(N) =
∫
El,M

g
(j,k)
l,vl

(x,y, z)dN(x,y, z) for any
N ∈Mp(E). By Proposition 3.13 in Resnick (2008), if any sequence Nn ⇒ N, then the
points of Nn locating in El,m converge to that of N locating in El,m. Since restricted on
El,M , the function g

(j,k)
l (x,y, z) has a compact support but is discontinuous at x = 0 or

x+ yTv−1,l = 0, the functional M(j,k)
l,vl

is continuous except on

D(M(j,k)
l,vl

) = {N ∈Mp(E) : xNi = 0 or xNi + (yNi )Tv−1,l = 0 for some i≥ 1},

where (xNi ,y
N
i , z

N
i , i≥ 1) denote the points of N. Since

P
{
N

(j,k)
l ∈D(M(j,k)

l,vl
)
}
= P

{
∃ i, J (j,k)

l,i = 0 or J (j,k)
l,i + (Z

(j,k)
l,i )Tv−1,l = 0

}
= 0 (B.70)

and J (j,k)
l,i is absolutely continuous, we have

RT,M =M(j,k)
l,vl

(
N̂

(j,k)
l,T

)
d−→M(j,k)

l,vl

(
N

(j,k)
l

)
=R0,M , (B.71)

for any fixed M > 0 as T →∞, by the continuous mapping theorem.

Step (2). Next, we show that

lim
M→∞

limsup
T→∞

P{|RT −RT,M |> ε}→ 0, (B.72)
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for any ε > 0. For notational simplicity, we denote ξt = ξ
(j,k)
t , qt = ql,t,Z−1,t =Z−1,l,t, and

suppose s(j)l = 1 without loss of generality. Then, for any M > 0,

|RT −RT,M | ≤
T∑
t=1

{
|ξt|1 (|ξt| ≥M)1

(
Tqt +Z

T

−1,tv−1,l ≤ 0< Tqt
)}

=:

T∑
t=1

Gt(M), say. (B.73)

Since

E
{
|ξt|1 (|ξt| ≥M) |ZT

l,tγ = 0
}
≤{E(|ξt|2|ZT

l,tγ = 0)}1/2
{
P(|ξt|>M |ZT

l,tγ = 0)
}1/2

≤{E(|ξt|2|ZT

l,tγ = 0)}1/2
{E(|ξt|2|ZT

l,tγ = 0)}1/2

M

=Op
(
M−1

)
(B.74)

almost surely, where the first inequality is via Cauchy-Schwarz inequality and the second
is by Markov inequality, provided E(|ξt|2|ZT

l,tγ = 0) <∞ for γ in a neighborhood of γl,0,
which is ensured by Assumption 4 (iv). Using (B.74) and with the similar arguments as in
the proof of Lemma A.2 (i), we can show that E{Gt(M)}=O

(
(MT )−1

)
. Therefore,

E|RT −RT,M | ≤
T∑
t=1

E{Gt(M)}=O
(
M−1

)
,

for any T and M , which implies (B.72) by Markov inequality.

Step (3). Next, we show that R0 =R0,M + op(1). We notice that

R0 −R0,M =

∞∑
i=1

[
ξ
(j,k)
i 1

(
|ξ(j,k)i |>M

)
1
{
J
(j,k)
l,i +

(
Z

(j,k)
l,i

)
T

v−1,l ≤ 0< J
(j,k)
l,i

}]
.

Let Zmax = max
{
−
(
Z

(j,k)
l,i

)
T

v−1,l,Z
(j,k)
l,i ∈Z−1,l

}
, which is bounded since both Z−1,l

and the space of v−1,l are compact. This means that Zmax <∞. Since fq|Z−1,l
(0|Z−1,l) is

uniformly bounded by some constant, say Fl, by Assumption 5 (ii), the event

J (j,k)
l,i

fq|Z−1,l
(0|Z(j,k)

l,i )
+
(
Z

(j,k)
l,i

)
T

v−1,l ≤ 0<
J (j,k)
l,i

fq|Z−1,l
(0|Z(j,k)

l,i )
≡ J

(j,k)
l,i

implies 0≤J (j,k)
l,i ≤ FlZmax. Therefore,

|R0 −R0,M | ≤
∞∑
i=1

{
ξ
(j,k)
i 1

(
|ξ(j,k)i |>M

)
1(0≤J (j,k)

l,i ≤ FlZmax)
}
. (B.75)

Note that J (j,k)
l,i =

∑i
n=1 E

(j,k)
l,n where {E(j,k)

l,n }∞n=1 is an i.i.d. sequence of unit-exponential

variables, and {ξ(j,k)i }∞i=1 be an i.i.d. sequence follows the conditional distribution F (j,k)
l (·|Z(j,k)

l,i ),

that is independent to {E(j,k)
l,n }∞n=1. Hence, P(t) =

∑N(t)
i=1 ξ

(j,k)
i 1(|ξ(j,k)i | > M) for t ≥ 0
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is compound Poisson process with the jump size ξ
(j,k)
i 1(|ξ(j,k)i | > M), where N(t) =∑∞

i=1 1(J
(j,k)
l,i ≤ t) is a homogeneous Poisson process with rate 1. Therefore, we have

E{|R0 −R0,M |}
(i)

≤FlZmaxE
{
ξ
(j,k)
i 1

(
|ξ(j,k)i |>M

)}
,

(ii)

≤FlZmax

√
E
{(

ξ
(j,k)
i

)2}√
P
(
|ξ(j,k)i |>M

)
(iii)

≤ FlZmaxE
{(

ξ
(j,k)
i

)2}
/M → 0, as M →∞, (B.76)

where (i) is from Wald’s identity (Wald, 1944), (ii) is from Cauchy-Schwartz’s inequality and
(iii) is from Markov’s inequality. Because of the above result, we obtain R0,M =R0+ op(1),

which further implies that R0,M
d−→R0.

Through the three steps we have shown that (i)RT,M
d−→R0,M for any fixedM > 0 as T →

∞ by the continuous mapping theorem, (ii) limM→∞ limsupT→∞ P{|RT −RT,M |> ε}→
0 for any ε > 0, and (iii) R0,M

d−→ R0 as M →∞. Therefore, by applying Theorem 4.2 of

Billingsley (1968), RT
d−→ R0 as T →∞, i.e., T (j,k)

l,vl

(
N̂

(j,k)
l,T

)
d−→ T (j,k)

l,vl

(
N

(j,k)
l,T

)
. Because

in Part 3 it is shown that
(
N̂

(j,k)
l,T , l ∈ {1,2}, (j, k) ∈ S(l)

)
are asymptotically independent,

we conclude that
L∑
l=1

∑
(j,k)∈S(l)

T (j,k)
l,vl

(
N̂

(j,k)
l,T

)
d−→

L∑
l=1

∑
(j,k)∈S(l)

T (j,k)
l,vl

(
N

(j,k)
l,T

)
, (B.77)

as T →∞, which concludes the proof.

B.8. Proof of Lemma B.3.

PROOF. The proof for this lemma adapts that in Chernozhukov and Hong (2004). First,
we decompose DT (v) =

∑2
l=1

∑
(j,k)∈S(l)D

(j,k)
T (vl), where vl ∈Rdl for l= 1,2, and

D
(j,k)
T (vl) =

T∑
t=1

ξ
(j,k)
t 1

{
s
(j)
l

(
Tql,t +Z

T

−1,l,tv−1,l

)
≤ 0< s

(j)
l Tql,t

}
.

It is sufficient to show that D(j,k)
T (vl) is stochastic equi-lower-semicontinuous for each l ∈

{1,2} and (j, k) ∈ S(l). Without loss of generality, we take l = 1, j = 1, k = 2, since the
other cases can be proved in the same way. To simplify notations, let ṽ = v1, q̃t = q1,t, Z̃t =

Z−1,l,t, ξ̃t = ξ
(j,k)
t and D̃T (ṽ) =D

(1,2)
T (v1). With the above notations,

D̃T (ṽ) =

T∑
t=1

ξ̃t1
{(
T q̃t + Z̃

T

t ṽ−1

)
≤ 0< T q̃t

}
.

Because D̃T (ṽ) is a piece-wise constant function, which implies that D̃T (ṽ) takes discrete
values in each compact open set, it suffices to show that for any compact set B ⊂ Rd1 and
any δ > 0, there are open neighborhoods V (ṽ1), · · · , V (ṽk) of some ṽ1, · · · , ṽk such that
B ⊂∪kj=1V (ṽj) and

P
(
∪kj=1

{
inf

v∈V (ṽj)
D̃T (v)≤ D̃T (ṽj)

})
< δ, (B.78)
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for sufficiently large T .
Let {Zϕ(z̃j), j ≤ J(ϕ)} be J(ϕ) closed equal-sized cubes with the side-length ϕ such that

Z−1,1, the support of the distribution of Z−1,1, can be covered by the union of {Zϕ(z̃j), j ≤
J(ϕ)}, and the center of the cube Zϕ(z̃j) is denoted as z̃j . Construct (2m + 1)J(ϕ) sets
{Vkj , l=−m, · · · ,m, j ≤ J(ϕ)} ⊂Rd1 as

Vkj = {ṽ ∈Rd1 : νk −ψ < z̃Tṽ−1 < νk +ψ,∀z̃ ∈Zϕ(z̃j)},

where ψ > 0 and νk = kψ for k ∈ {−m, · · · ,0, · · · ,m}. Since Z−1,1 is a compact set, which
implies that the range of z̃Tṽ−1 is compact for any compact B, the union of {Vkj} can cover
B by selecting sufficiently large m.

Because D̃T (ṽ) is piece-wise constant, a discontinuity of D̃T (ṽ) can potentially occur
in ∪jVkj only if there exist v∗ ∈ ∪jVkj and (T q̃t∗ , Z̃t∗) for some t∗ ∈ {1, · · · , T} such that
T q̃t∗ = Z̃

T

t∗v∗, satisfying νk−ψ ≤ T q̃t∗ ≤ νk+ψ. If there is such (T q̃t∗ , Z̃t∗), we say D̃T (ṽ)
has a breakpoint in ∪jVkj . Define BT = |{t : 0< T q̃t < Z̄}|, where Z̄ = supz∈Z−1,1,v∈B z

Tv,
as an upper bound on the number of breakpoint of D̃T (ṽ) in B, and let B = |{i : Ji <
Z̄}|, where Ji =

∑i
m=1 Ei with {Ei}∞i=1 being i.i.d. unit exponentially distributed variables.

Because the point process induced by {T q̃t, t ∈ {1, · · · , T} : q̃t > 0} weakly converges to the
point process induced by {Ji}∞i=1 as shown in the proof of Lemma B.2, by the continuous

mapping theorem, we have BT
d−→B. Therefore, the number of breakpoints BT =Op(1).

We now show the breakpoints are separated, namely, no more than one breakpoint can
happen in ∪jVkj with probability arbitrarily close to one if ψ is sufficiently small. Let Ak
to be the event that D̃T (ṽ) has more than one breakpoint in ∪jVkj . Relabelling {T q̃t, t ∈
{1, · · · , T} : q̃t > 0} as {JiT } such that 0< J1T ≤J2T ≤ · · · . Then, because the point pro-
cess corresponding to {q̃t, t ∈ {1, · · · , T} : q̃t > 0} converges weakly to that corresponding
to {Ji}∞i=1, according to continuous mapping theorem, for any finite k ≤ T ,

(J1T , · · · ,JkT )
d−→ (J1, · · · ,Jk). (B.79)

Define Ak to be the event that D̃T (ṽ) has more than two break-points in ∪jVkj . Since ∪kAk
happens if at least one pair (J(i−1)T ,JiT ) for some i≤ BT satisfying JiT −J(i−1)T < 2ψ,
we have

limsup
T→∞

P(∪kAk)≤ limsup
T→∞

P
{

min
2≤i≤NT

(JiT −J(i−1)T )< 2ψ

}
≤ limsup

T→∞
P
{

min
2≤i≤K

(JiT −J(i−1)T )< 2ψ

}
+ P(BT >K)

(i)

≤P
{

min
2≤i≤K

(Ji −J(i−1))< 2ψ

}
+ P(B >K)

(ii)

≤ δ/2, (B.80)

where (i) is by (B.79), (ii) is by taking K sufficiently large such that P(B >K)< δ/4, and
taking ψ sufficiently small such that P

{
min2≤i≤K(Ji −J(i−1))< 2ψ

}
< δ/4. The latter is

possible since by definition Ji−J(i−1) = Ei−1 has independent unit exponential distribution.
Hence

P
{

min
2≤i≤K

(Ji −J(i−1))< 2ψ

}
= P

{
min

2≤i≤K
Ei−1 < 2ψ

}
= 1− e−2ψ(K−1),

which converges to 0 as ψ(K − 1)→ 0.
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We construct centers ṽkj in Vkj such that

νk −ψ < z̃Tṽ−1,kj < νk −ψ+ η, ∀z̃ ∈Zϕ(z̃j),

where η will be set sufficiently small in the next step. Depending on η, we will set ϕ suffi-
ciently small as well to satisfy the above constraints. Note that the left-side hand of (B.78)
can be decomposed as

P
(
∪j,k

{
inf

v∈Vkj(ṽkj)
D̃(v)≤ D̃T (ṽkj)

})
< limsup

T→∞
P{B(η)}+ limsup

T→∞
P(∪kAk), (B.81)

where B(η) is the event that {JiT , i ≤K} are separated, and at least one of JiT ∈ [νki −
ψ,νki − ψ + η] for some ki ∈ {1, · · · ,K}. The bound (B.81) holds because D̃(v) can only
jump if JiT increases, implying that

∪j,k
{

inf
v∈Vkj(ṽkj)

D̃(v)≤ D̃T (ṽkj)

}
∩ (∪kAk)c =B(η).

Due to (B.79) and the fact that {Ji} have a bounded density, we have

limsup
T→∞

P{B(η)}=O(Kη)< δ/2, (B.82)

by choosing η sufficiently small. Combining (B.80)–(B.82) completes the proof for Lemma
B.3.

B.9. Proof of Lemma B.4.

PROOF. Let fn(v) =
∑∞

i=0 ani1(v ∈ Fni), where {ani ∈ R}∞i=1 are jump sizes and
{Fni ∈ Rd}∞i=0 are non-overlapping level sets. Let f̃n(v) =

∑∞
i=0 i1(v ∈ Fni) be the as-

sociated jump process. Note f̃n has a jump with size 1 at the boundary of each level set
Fni. Let the limiting piece-wise constant function be f0(v) =

∑∞
i=0 a0i1(v ∈ F0i), whose

associated jump process be f̃0(v) =
∑∞

i=0 i1(v ∈ F0i). For any compact set E, we define
In(E) = {i : Fn,i ∩E /∈ ∅} and I0(E) = {i : F0,i ∩E /∈ ∅} be the index sets for the level sets
of fn and f0 that have intersections with E, respectively. Let the argmin sets of fn and f0 on
the compact set E be Gn and G0, respectively.

Step 1. Convergence of level sets.
We first show the convergence of the level sets {Fni, i ∈ In(E)} to {F0i, i ∈ In(E)}, using

the epi-convergence of the jump processes {f̃n}. For any interior point vi in F0,i, which
is a continuous point of f0 and f̃0, let ε0 > 0 be any sufficiently small constant such that
N (vi;ε0)⊂ F0,i. By a similar argument to that used in the proof of Lemma B.3, there exists
some v′i ∈N (vi;ε0) such that fn and f̃n are asymptotically equi-lower semicontinuous at v′i.
Since we have {f̃n} epi-converge to f̃0, by applying Theorem 7.10 of Rockafellar and Wets
(1998), we have the pointwise convergence f̃n(v′i)→ f̃0(v

′
i) as n→∞. Let ∂F0,i = F̄0,i \

F ◦
0,i be the boundary of F0,i for each i ∈ I0(E), where sets F̄0,i and F ◦

0,i are the closure and
interior of F0,i, respectively. Then we can find infinitely many v ∈ F ◦

0,i with infv′∈∂F0,i
‖v−

v′‖ = ε0, such that f̃n(v)→ f̃0(v) = i. This together with the connectness of Fn,i implies
that F ε0−0,i ⊂ Fn,i, where F ε0−0,i = F̄0,i \

{
v ∈ F̄0,i, infv′∈∂F0,i

‖v− v′‖ ≤ ε0
}

. Similarly we
can find infinitely many v ∈ E \ F̄0,i with infv′∈∂F0,i

‖v − v′‖ = ε0, such that f̃n(v) →
f̃0(v) 6= i. It means that for each sufficiently large n, there is a jump of f̃n in the region {v ∈
E : infv′∈∂F0,i

‖v−v′‖< ε0} around the boundary of F0,i for each i ∈ I0(E). Therefore, we
obtain |In(E)| → |I0(E)| as n→∞. Also, since ε0 can be taken arbitrarily close to 0 and
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µ(∂F0,i) = 0, where µ is the Lebesgue measure, for each 1 ≤ i ≤N0 and each sufficiently
large n, it holds that |1(v ∈ Fn,i) − 1(v ∈ F0,i)| → 0 almost surely under the Lebesgue
measure.

Step 2. Convergence of the argmin level set.
We now show the minimzed set of fn converges to that of f0. Let F0,i∗ be the level set

on which f0 attains its minimum. By the condition that ξ0,i 6= ξ0,j if i 6= j, such i∗ is unique.
Hence F0,i∗ =G0. Note that unlike the proof of Theorem 1 of Knight (1999), applying Theo-
rem 7.33 of Rockafellar and Wets (1998) can only ensure Gn ⊂G0 asymptotically. However,
such result can be strengthened by utilizing the piece-wise constant property of fn and f0.
From the above paragraph, it has been shown that each level set Fn,i of fn converges to F0,i of
f0. As argued in the previous paragraph, for each i ∈ I0(E) we can find vi ∈ F0,i, such that f0
is continuous at vi and {fn} are asymptotically equi-lower semicontinuous at vi. Hence the
epi-convergence of {fn} to f0 implies the pointwise convergence of fn(vi)→ f0(vi) = ai0,
meaning that an,i → a0,i for each i ∈ I0(E) . Because {a0,i, i ∈ I0(E)} is uniquely mini-
mized at i= i∗, for any ϵ > 0 such that for any sufficiently large n, we have an,i∗ < an,i + ϵ,
which means that the minimizer level setGn of fn is unique and equals to Fn,i∗. This together
with the result in the previous paragraph implies |1(v ∈ Gn)− 1(v ∈ G0)| → 0 for almost
surely v. The desired result (B.27) in Lemma B.4 then follows by applying the dominated
convergence theorem.

B.10. Proof of Lemma B.5.

PROOF. By (B.24), WT (u) can be written as WT (u) =
∑4

i=1(u
T

i E[XXT1{Z ∈
Ri(γ0)}]ui − 2uT

iHi,T ), where

Hi,T =
1√
T

T∑
t=1

Xtεt1{Zt ∈Ri(γ0)}.

Let a ∈ Rp with ‖a‖ = 1. Also let Ha,i,T = aTHi,T and σ2a,i = aTΣia
T, where Σi =

E[XXTε21{Z ∈ Ri(γ0)}]. Then with Assumptions 1.(ii) and 3.(i), by the martingale cen-

tral limit theorem (Hall and Heyde, 1980), it holds that σ−1
a,iHa,i,T

d−→ N(0,1). Hence, by

the Cramer-Wold device, we obtain Hi,T
d−→N(0,Σi), which implies that WT (u)

d−→W (u).
Since the stochastic component of WT (u) is linear in u, the stochastic equicontinuity of

WT (u) can be trivially proved. Hence WT
d−→W in ℓ∞(B).

We now show the asymptotic independence between WT (u) and DT (v). For indepen-
dence observations, it can be readily proved by the characteristic function approach used in
Yu (2012), which however may not be suitable for the dependence case. In this proof, we
employ the device established in Hsing (1995), which can be used to show the asymptotic
independence between the extreme type and sum type statistics for the mixing sequences. We
notice that while the original results in that paper were for univariate random variables, they
can be extended to multivariate cases with essentially the same proof.

As in Part 1 of the proof of Lemma B.2, we writeDT (v) =
∑2

l=1

∑
(j,k)∈S(l) T

(j,k)
l,vl

(
N̂

(j,k)
l,T

)
,

where N̂(j,k)
l,T is a point process defined in (B.46) and T (j,k)

l,vl
is a continuous functional. There-

fore, it suffices to show the asymptotic independence between N̂
(j,k)
l,T and Ha,i,T for any

a ∈Rp with ‖a‖= 1, l ∈ {1,2}, (j, k) ∈ S(l) and i ∈ {1, · · · ,4}. If one has

P
{
Ha,i,T /σa,i,t ≤ x, N̂

(j,k)
l,T (Fi) = ki,1≤ i≤ s

}
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=P (Ha,i,T /σa,i,t ≤ x)P
{
N̂

(j,k)
l,T (Fi) = ki,1≤ i≤ s

}
+ o(1), (B.83)

for any x ∈ R, positive integer s, non-negative integers {ki}si=1, and non-overlapping sets
{Fi = (F1i, F2i, F3i)}si=1 ∈ E(l), where E(l) is the basis of relatively compact open set in El
as used in Part 2 of Section B.7, then N̂

(j,k)
l,T is independent with Ha,i,T .

First, we verify Conditions (2.1) and (2.2) of Hsing (1995). Let ζt = (Tql,t,Z−1,l,t, ζ
(j,k)
t )

and BT,i = Fi for 1≤ i≤ s and BT,s+1 = ∩si=1B
c
T,i. Then,

limsup
T→∞

TP(ζt /∈BT,s+1)≤ limsup
T→∞

s∑
i=1

TP(ζt ∈BT,i)

=

s∑
i=1

µ
(j,k)
l (BT,i)<∞, (B.84)

where the equality is due to (B.49). Hence, Condition (2.1) of Hsing (1995) is ensured. In
addition, Condition (2.2) of the same paper also holds, since

lim
l→∞

limsup
T→∞

P
{
∪Tt=l(ζt /∈BT,s+1)|ζ1 /∈BT,s+1

}
= lim
l→∞

limsup
T→∞

P
{
∪Tt=l(ζt /∈BT,s+1)∩ (ζ1 /∈BT,s+1)

}
P(ζ1 /∈BT,s+1)

= lim
l→∞

limsup
T→∞

O(T−2)

O(T−1)
= 0,

where the denominator part is from (B.84) and the numerator is derived in the same way as
in (B.51).

We now show the desired (B.83) with similar arguments as in Theorem 2.2 of Hsing
(1995). Let ζ̃T = (ζ1, · · · , ζT )T. For any Ã = (A1, · · · ,AT ), the notation ζ̃T ∈ Ã stands for
ζt ∈ At for each 1 ≤ t ≤ T , and ζ̃T /∈ Ã otherwise. Let B̃T = {B̃ = (B1, · · · ,BT )}, where
each Bt ∈ {BT,1, · · · ,BT,s+1} for each 1≤ t≤ T . Also we let

B̃′
T =

{
B̃ ∈ B̃T :

T∑
t=1

1(Bt =BT,i) = ki, for 1≤ i≤ s

}
.

By such constructions, we have{
∪B̃∈B̃(ζ̃T ∈ B̃)

}
∩
{
N̂

(j,k)
l,T (BT,i) = ki,1≤ i≤ s

}
(i)
= ∪B̃∈B̃′ (ζ̃T ∈ B̃)

(ii)
=
{
N̂

(j,k)
l,T (BT,i) = ki,1≤ i≤ s

}
.

Also, we note that (i) implies that

0≤P
{
Ha,i,T /σa,i,t ≤ x, N̂

(j,k)
l,T (Fi) = ki,1≤ i≤ s

}
− P

{
Ha,i,T /σa,i,t ≤ x,∪B̃∈B̃′(ζ̃T ∈ B̃)

}
≤P
{
∩B̃∈B̃(ζ̃T /∈ B̃)

}
. (B.85)

With the fact that the events {(ζ̃T /∈ B̃)}B̃∈B̃′ are disjoint, repeatedly applying Theorem 2.1
of Hsing (1995) leads to

P
{
Ha,i,T /σa,i,t ≤ x, N̂

(j,k)
l,T (Fi) = ki,1≤ i≤ s

}
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(iii)
=
∑
B̃∈B̃′

P
{
Ha,i,T /σa,i,t ≤ x, ζ̃T ∈ B̃

}
+ o(1)

(iv)
= P(Ha,i,T /σa,i,t ≤ x)

∑
B̃∈B̃′

P
(
ζ̃T ∈ B̃

)
+ o(1)

=P(Ha,i,T /σa,i,t ≤ x)P
{
∪B̃∈B̃′(ζ̃T ∈ B̃)

}
+ o(1)

(v)
=P(Ha,i,T /σa,i,t ≤ x)P

{
N̂

(j,k)
l,T (Fi) = ki,1≤ i≤ s

}
+ o(1),

where (iii) is because of (B.85) and (2.3) in Theorem 2.1 of Hsing (1995), (iv) is implied
by (2.4) in the same theorem, and (v) is due to the equivalence relationship (ii). Hence,
(B.83) is now verified. Since the above derivations hold for any a ∈ Rp with ‖a‖ = 1,
l ∈ {1,2}, (j, k) ∈ S(l) and i ∈ {1, · · · ,4}, we complete the proof for the asymptotic in-
dependence between WT (u) and DT (v).

APPENDIX C: PROOF FOR SECTION 4 AND ADDITIONAL ALGORITHMS

C.1. Proof of Theorem 4.1. The following proof is for Theorem 4.1 on the validity of
the MIQP.

PROOF. Let the criterion function of the MIQP be

VT (ℓ) =
1

T

T∑
t=1

(
Yt −

4∑
k=1

p∑
i=1

Xt,iℓk,i,t

)2

,

where ℓ= {ℓk,i,t : k = 1, · · · ,4, i= 1, · · · , p, t= 1, · · · , T}. The constraints of the MIQP are

1. βk ∈ B, γj ∈ Γ,

2. gj,t ∈ {0,1}, Ik,t ∈ {0,1},

3. Li ≤ βk,i ≤ Ui,

4. (gj,t − 1)(Mj,t + ϵ)<ZT

j,tγj ≤ gj,tMj,t,

5.(i). Ik,tLi ≤ ℓk,i,t ≤ Ik,tUi,

5.(ii). Li(1− Ik,t)≤ βk,i − ℓk,i,t ≤ Ui(1− Ik,t),

6. Ik,t ≤ s
(k)
j gj,t + (1− s

(k)
j )/2, Ik,t ≥

2∑
j=1

{
s
(k)
j gj,t + (1− s

(k)
j )/2

}
− 1,

for k = 1, · · · ,4, j = 1,2, i = 1, · · · , p and t = 1, · · · , T. Define g = {gj,t : j = 1,2, t =
1, · · · , T}, I = {Ik,t : k = 1, · · · ,4, t = 1, · · · , T}. The solution of the MIQP is denoted as
(β̄, γ̄, ḡ, Ī, ℓ̄) = argminβ,γ,g,I,ℓVT (ℓ).

To prove the theorem, it suffices to show that (i) MT (θ̄) = VT (ℓ̄), where θ̄ = (γ̄T, β̄T)T;
(ii) VT (ℓ̄)≥MT (θ̂); and (iii) MT (θ̂)≥VT (ℓ̄).

Proof of (i): It is sufficient to show that(
Yt −

4∑
k=1

XT

t β̄k1j(Z
T

1,tγ̄1,Z
T

2,tγ̄2)

)2

=

(
Yt −

4∑
k=1

p∑
i=1

Xt,iℓ̄k,i,t

)2

. (C.1)
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We show that ℓ̄k,i,t = β̄k,i1k(Z
T

1,tγ̄1,Z
T

2,tγ̄2). If 1k(ZT

1,tγ̄1,Z
T

2,tγ̄2) = 1, then by Constraints
2 and 6, we have Ik,t = 1, which implies that ℓ̄k,i,t = β̄k,i. If 1k(ZT

1,tγ̄1,Z
T

2,tγ̄2) = 0, then by
Constraints 2 and 6 we have Ik,t = 0, which implies that ℓ̄k,i,t = 0. Combining the two cases
verifies ℓ̄k,i,t = β̄k,i1k(Z

T

1,tγ̄1,Z
T

2,tγ̄2) for each k, i, t, which implies (C.1).

Proof of (ii): Note that

VT (ℓ̄) =MT (θ̄)≥ min
β∈A,γ∈G

MT (θ) =MT (θ̂),

where the first equality is by (i) and the last equality is by the definition of θ̂.

Proof of (iii): Define ℓ̂k,i,t = β̂k,iÎk,t, where Îk,t =
∏2
j=1 s

(k)
j ĝj,t and ĝj,t = 1{ZT

t γ̂j > 0}.

Then by definition MT (θ̂) = VT (ℓ̂), where ℓ̂ = {ℓ̂k,i,t}. If (β̂, γ̂, d̂, ℓ̂) satisfy Constraints
1-6 above, then by the definition of ℓ̄, we have VT (ℓ̂)≥ VT (ℓ̄) and hence, (iii) can be veri-
fied. Constraints 1-3 are ensured by the definitions. For Constraint 4, note that if ZT

j,tγ̂j > 0,
then by definition ĝj,t = I(ZT

j,tγ̂j > 0) = 1. Constraint 4 becomes 0 < ZT

j,tγ̂j ≤Mj,T =
supγ∈Γj

|ZT

j,tγ|, which is satisfied. When ZT

j,tγ̂j ≤ 0, then ĝj,t = 0. Condition 4 becomes
−Mj,t− ϵ <ZT

j,tγ̂j ≤ 0, which holds for any ϵ > 0. Hence, Condition 4 is verified. For Con-
dition 5, note that if Îk,t = 1, then ℓ̂k,i,t = β̂k,i by its definition, which meet the requirement
in Constraint 5 (i) and (ii). Otherwise, if Îk,t = 0, then ℓ̂k,i,t = 0, and Constraints 5 (i) and (ii)
are satisfied. For Constraint 6, it is ready to verify that

2∑
j=1

{
s
(k)
j ĝj,t + (1− s

(k)
j )/2

}
− 1≤

2∏
j=1

s
(k)
j ĝj,t ≤ s

(k)
j ĝj,t + (1− s

(k)
j )/2,

for any ĝ1,t, ĝ2,t ∈ {0,1} and s
(k)
1 , s

(k)
2 ∈ {−1,1}. In summary, (β̂, γ̂, d̂, ℓ̂) satisfies Con-

straints 1-6, implying that

MT (θ̂) =VT (ℓ̂)≥VT (ℓ̄),

which proves (iii). Combining parts (i), (ii) and (iii), we obtain MT (θ̂) = MT (θ̄), which
completes the proof of Theorem 4.1.

C.2. Block coordinate descent. The MIQP presented in Section 4 of the main paper
may be slow when the dimension of Xt and the sample size T are large. As an alternative,
we present a block coordinate descent (BCD) algorithm.

Iterate the following two steps until max1≤k≤4 ‖β̂s+1
k − β̂sk‖< η.

Step 1. For each given β̂s, solve the following mixed integer linear programming (MILP)
problem:

min
β,γ,g,I,ℓ

1

T

T∑
t=1

4∑
k=1

{
(XT

t β̂
s
k)

2 − 2YtX
T

t β̂
s
k

}
Ik,t (C.2)

subject to



γj ∈ Γj , gj,t ∈ {0,1}, Ik,t ∈ {0,1};

(gj,t − 1)(Mj,t + ϵ)<ZT

j,tγk ≤ gj,tMj,t, Ik,tLi ≤ ℓk,i,t ≤ Ik,tUi;

Ik,t ≤ s
(k)
l gl,t +

1− s
(k)
l

2
, Ik,t ≥

2∑
l=1

(
s
(k)
l gl,t +

1− s
(k)
l

2

)
+ 1−L,

(C.3)
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for k = 1, · · · ,4, j = 1,2, i= 1, · · · , dx and t= 1, · · · , T. Let the solution be γ̂s+1.

Step 2. For the given γ̂s+1, obtain

β̂s+1
k = [ET {XtX

T

t 1(Zt ∈Rk(γ̂s+1)}]−1ET {YtXt1(Zt ∈Rk(γ̂s+1)}.

REMARK C.1. The advantages of the BCD compared with the MIQP are that the op-
timization with respect to γ in each iteration is a linear programming instead of quadratic
programming, and that for βk in each iteration has a close form solution. Therefore, the
BCD can significantly reduce computation cost. However, unlike the MIQP presented in the
main paper, there is no theoretical guarantee for the global optimality of the solutions of the
BCD. For the BCD, the specification of the initial value θ̂0 is important. In practice, it can
be obtained from a grid search procedure, or we can use the output of the MIQP after several
iterations as the initial value for the BCD.

The following Table S1 reports the comparison between the joint MIQP algorithm pro-
posed in Section 4 of the main paper and the block coordinate descent algorithm presented
in Section C.2. The sample was generated according to

Yt =

4∑
k=1

XT

t βk01k(Z
T

1,tγ10,Z
T

2,tγ20) + εt t= 1, · · · , T

where Xt = (X̃T

t ,1)
T with X̃t = (X1,t, · · · ,Xp−1,t)

T and Zj,t = (Z̃T

j,t,1)
T with Z̃j,t =

(Zj,1,t, · · · ,Zj,d−1,t)
T for j = 1,2, and the residuals εt = σ(Xt,Zt)et with σ(Xt,Zt) =

1+0.1X2
1,t+0.1Z2

1,1,t and {et}Tt=1 being generated independently from the standard normal
distribution and being independent of {Xt,Zt}Tt=1. Let Vt = (X̃T

t , Z̃
T

1,t, Z̃
T

2,t)
T. We gener-

ated {Vt}Tt=1
i.i.d.∼ N(0,ΣV ), where ΣV = (σij)i,j=1,··· ,7 with σii = 1 and σij = 0.1 if i 6= j.

We considered two sets of dimensions for Xt and Zt. For p = 4 and d = 3, the regres-
sion coefficients of the four regimes were β10 = (1,1,1,1)T,β20 = (−3,−2,−1,0),β30 =
(0,1,3,−1)T and β40 = (2,−1,0,2)T, and the two boundary coefficients γ10 = (1,−1,0)T

and γ20 = (1,1,0)T, respectively. For p = 10 and d = 6, the regression coefficients of
the four regimes were β10 = (1,1,1,1,1,0, · · · ,0)T,β20 = (−3,−2,−1,1,0, · · · ,0),β30 =
(0,1,3,−1,1,0, · · · ,0)T and β40 = (2,−1,0,2,1,0, · · · ,0)T, and the two boundary coeffi-
cients γ10 = (1,−1,−1,−1,0,0)T and γ20 = (1,1,1,1,0,0)T, respectively. The simulation
experimented four sample sizes: {200,400,800,1600}, and the experiments were repeated
500 times for each sample size. The initial values for the BCD were set as the outputs of the
MIQP after 5 log(T ) iterations. The stopping criterion parameter was specified as η = 10−4.

Table S1 shows that the estimation errors of both γ0 and β0 obtained with the BCD were
slightly larger than those with the MIQP, while their discrepancies were shrinking as T in-
creased. The running time of the BCD, on the other hand, was significantly shorter than that
of the joint MIQP, especially when the dimensions and sample sizes were large, because of
the reasons we discussed above and in the main paper. Therefore, it is advocated to use the
iterative BCD for large dimensions and sample sizes. However, it should also be noted that it
is crucial to choose a good initial value for the BCD for its success. In the above simulations,
we used the outputs of the MIQP after several iterations to ensure the quality of the initial
values, as poor initial values can lead to large estimation errors.

C.3. MIQP for the three-regime models. The MIQP algorithms are not only suitable
for solving the LS problem of the four-regime segmented regression but can also be extended
to other segmented regressions. In Section 7.2 of the main paper we have reported simulation
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TABLE S1
Empirical average estimation errors ∥γ0 − γ̂∥2 and ∥β0 − β̂∥2 (multiplied by 10), and running time (in
second) obtained with the joint MIQP algorithm and the block coordinate descent (BCD) algorithm. The

numbers inside the parentheses are the standard errors of the simulated averages.

p= 4, d= 3 p= 10, d= 6

T
MIQP BCD MIQP BCD

γ̂ β̂ Time γ̂ β̂ Time γ̂ β̂ Time γ̂ β̂ Time

200
1.00 6.02 65.3 1.13 6.03 7.7 3.15 10.93 149.1 3.31 11.17 10.0

(0.59) (1.15) (11.3) (0.62) (1.14) (1.2) (1.83) (2.40) (15.3) (1.88) (2.49) (1.9)

400
0.51 4.08 364.1 0.59 4.11 14.3 1.59 7.78 583.6 1.66 7.85 23.9

(0.31) (0.76) (27.9) (0.28) (0.79) (3.1) (0.92) (1.51) (40.1) (0.98) (1.63) (6.4)

800
0.25 2.84 1157.7 0.27 2.85 48.9 0.78 5.20 1817.3 0.82 5.31 69.0

(0.15) (0.49) (53.2) (0.14) (0.47) (7.0) (0.41) (0.82) (89.4) (0.43) (0.84) (11.4)

1600
0.13 2.00 2792.2 0.14 2.00 162.4 0.38 3.61 4502.9 0.40 3.67 208.1

(0.07) (0.37) (162.0) (0.07) (0.38) (12.1) (0.19) (0.57) (217.5) (0.18) (0.58) (21.4)

results under segmented models with less than four regimes to compare the four-regime es-
timation under misspecifications with the estimation with correctly specified models, where
the corresponding MIQPs for less than four regimes models were applied. In this subsection,
we present MIQP formulations for the three-regime models with and without intersections.
The MIQP for the two-regime model was proposed in Lee et al. (2021).

(i) MIQP for the three-regime model with non-intersected boundaries.

Let g = {gj,t : j = 1,2, t = 1, · · · , T}, I = {Ik,t : k = 1,2,3, t = 1, · · · , T} and ℓ =
{ℓk,i,t : k = 1,2,3, i= 1, · · · , p, t= 1, · · · , T}. Consider solving the following problem

min
β,γ,g,I,ℓ

1

T

T∑
t=1

(
Yt −

3∑
k=1

p∑
i=1

Xi,tℓk,i,t

)2

,

subject to



βk ∈ B, γj ∈ Γ, gj,t ∈ {0,1}, Ik,t ∈ {0,1}, Li ≤ βk,i ≤ Ui;

(gj,t − 1)(Mj,t + ϵ)<ZT

j,tγj ≤ gj,tMj,t;

gj,tLi ≤ ℓj,i,t ≤ gj,tUi, I2,tLi ≤ ℓ2,i,t ≤ I2,tUi;

Li(1− gj,t)≤ βk,i − ℓj,i,t ≤ Ui(1− gj,t);

Li(1− I2,t)≤ β2,i − ℓ2,i,t ≤ Ui(1− I2,t);

I2,t ≤ g1,t, I2,t ≤ 1− g2,t, I2,t ≥ g1,t − g2,t,

for k = 1,2,3, j = 1,2, i= 1, · · · , p and t= 1, · · · , T.

(ii) MIQP for the three-regime model with intersected boundaries.

Let g = {gj,t : j = 1,2, t = 1, · · · , T}, I = {Ik,t : k = 1,2,3, t = 1, · · · , T} and ℓ =
{ℓk,i,t : k = 1, · · · ,3, i= 1, · · · , p, t= 1, · · · , T}. Solve the following problem:

min
β,γ,g,I,ℓ

1

T

T∑
t=1

(
Yt −

3∑
k=1

p∑
i=1

Xi,tℓk,i,t

)2

, (C.4)
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subject to



βk ∈ B, γj ∈ Γ;

gj,t ∈ {0,1}, Ik,t ∈ {0,1};

Li ≤ βk,i ≤ Ui

(gj,t − 1)(Mj,t + ϵ)<ZT

j,tγj ≤ gj,tMj,t;

g1,tLi ≤ ℓ1,i,t ≤ g1,tUi, Ik,tLi ≤ ℓk,i,t ≤ Ik,tUi

Li(1− g1,t)≤ βk,i − ℓ1,i,t ≤ Ui(1− g1,t);

Li(1− Ik,t)≤ βk,i − ℓk,i,t ≤ Ui(1− Ik,t);

I2,t ≤ 1− g1,t, I2,t ≤ 1− g2,t, I2,t ≥ 1− g1,t − g2,t;

I3,t ≤ g1,t, I3,t ≤ 1− g2,t, I3,t ≥ g1,t − g2,t,

for k = 1,2,3, j = 1,2, i= 1, · · · , p and t= 1, · · · , T.

APPENDIX D: PROOFS FOR SECTION 5

In this section, we analyze the validity of the proposed smoothed regression bootstrap for
the inference of the boundary coefficient γ0 and the regression coefficient β0. Our proofs
include two parts. In Section D.1, we presents some conditions for a general bootstrap pop-
ulation, under which the consistency of the bootstrap is shown. In Section D.2, we verify
the proposed smoothed regression bootstrap satisfies these conditions, and hence establish its
consistency.

D.1. Sufficient conditions for a consistent bootstrap for the segmented regressions.
Given a sample DT from the model of segmented regression (2.1) of the main paper, suppose
the LSE for β0 obtained with DT is β̂ = (β̂T

1 , · · · , β̂T

4 )
T, and the centriod of the LSEs for γ0

is γ̂c. To simplify notations, in this section we use γ̂ for γ̂c. Let θ̂ = (γ̂, β̂). The model to
generate the bootstrap resamples is

Y =

4∑
k=1

XTβ̂k1{Z ∈Rk(γ̂c)}+ ε, (D.1)

where (X,Z, ε)∼ Q̂h, which generate the bootstrap population that mirrors the population
distribution P0 that generates the original sample DT . Let {Y ∗

i ,X
∗
i ,Z

∗
i }
mT

i=1 be a bootstrap
resample from (D.1), we denote by Q̂∗

h as its empirical measure. The LSEs obtained with the
bootstrap resample are θ̂∗ = (γ̂∗, β̂∗) such that

Q̂∗
h{m(W ∗, θ̂∗)}=min

θ∈Θ
Q̂∗
h{m(W ∗,θ)}

=min
θ∈Θ

1

mT

mT∑
i=1

[Y ∗
i − {

4∑
k=1

X∗
i βk1(Z

∗
i ∈Rk(γ)}]2. (D.2)

Let the bootstrap LSE set for γ be Ĝ∗, whose centriod is denoted as γ̂∗c.

The sufficient conditions for a consistent boostrap for the segmented regressions are listed
as follows.

(C1) [Consistency] θ̂→ θ0.
(C2) [Moment conditions] limsupT→∞Q̂h(‖X‖4)<∞ and limsupT→∞Q̂h(ε

4)<∞.
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(C3) Q̂h(εQ|X,Z) = 0 and Q̂h(ε
2
Q)→ P0(ε

2).
(C4) Suppose that U(X,Z) is a function of (X,Z) with P0{|U(X,Z)|}<∞, then

sup
R⊂Z

∣∣∣Q̂h{U(X,Z)1(Z ∈R)} − P0{U(X,Z)1(Z ∈R)}
∣∣∣→ 0. (D.3)

(C5) There exist some constants δ1 and c1 > 0 such that for each l = 1 and 2 and any ϵ ∈
(0, δ1), it holds that Q̂h{1(|ql|< ϵ)|Z−1,l}> c1ϵ almost surely.

(C6) There exists some constant r > 8 such that for each l= 1 and 2, there exists a neighbor-
hood Nl for γl0 such that supγ∈Nl

Q̂h(‖X‖r|ZT

l γ = 0)<∞, infγ∈Nl
Q̂h(‖X‖|ZT

l γ =

0)> 0 and supγ∈γl
Q̂h(ε

r|ZT

l γ = 0)<∞.
(C7) For each l ∈ {1,2}, as T →∞ the following hold.

(i) Let f̃Zl
be the density function of Zl under Q̂h and fZl

be the density function of
Zl under P0, then ‖f̃Zl

− fZl
‖∞ → 0;

(ii) For each (j, k) ∈ S(l),

Q̂h

{
eitξ

(j,k)
Q |ql,Q = 0,Z−1,l

}
→ P0

{
eitξ

(j,k) |ql = 0,Z−1,l

}
almost surely. (D.4)

(iii) Under Q̂h, the conditional density f̃ξ(j,k)
Q |(ql,Q,Z−1,l)

(ξ|q,z) and f̃ql,Q|Z−1,l
(q|z) are

continuous at q = 0 and bounded by some 0<F <∞ for any ξ ∈R and z ∈Z−1,l;

The following Lemmas D.1–D.5 will establish that under Conditions (C1)–(C7), the
asymptotic distributions of the bootstrap estimators are the same as that of the estimators
obtained with the sample DT . The proofs essentially mimics that in Section B, while re-
quire careful verification for the validity of replacing (P0,θ0) with its bootstrap counterpart
(Q̂h, θ̂).

LEMMA D.1. Assume that Assumptions 1-5 and Conditions (C1)–(C4) hold, then θ̂∗ P−→
θ0.

PROOF. First, we show supθ∈Θ

∣∣∣Q̂h {m(W ,θ)} − P0 {m(W ,θ)}
∣∣∣→ 0. For any θ, un-

der Q̂h where Y =
∑4

k=1X
Tβ̂1{Z ∈R(γ̂)}+ ε,

Q̂h{m(W ,θ)}= Q̂h(ε
2
Q)

+

4∑
k=1

Q̂h[{XT(βk − β̂k)}21(k)(γ̂)1(k)(γ)] +
∑
k ̸=j

Q̂h[{XT(βj − β̂k)}21(k)(γ̂)1(j)(γ)]

+ 2

4∑
k=1

Q̂h[εX
T(βk − β̂k)1(k)(γ̂)1(k)(γ)] + 2

∑
k ̸=j

Q̂h[εX
T(βj − β̂k)1(k)(γ̂)1(j)(γ)]

=:AQ +B1,Q(θ) +B2,Q(θ) +C1,Q(θ) +C2,Q(θ), say.

Similarly, under P0 where Y =
∑4

k=1X
Tβ01

(k)(γ0) + ε,

P0{m(W ,θ)}= P0(ε
2)

+

4∑
k=1

P0[{XT(βk −β0,k)}21(k)(γ0)1
(k)(γ)] +

∑
k ̸=j

P0[{XT(βj −β0,k)}21(k)(γ0)1
(j)(γ)]
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+ 2

4∑
k=1

P0[εX
T(βk −β0,k)1

(k)(γ0)1
(k)(γ)] + 2

∑
k ̸=j

P0[εX
T(βj −β0,k)1

(k)(γ0)1
(j)(γ)]

=:AP +B1,P (θ) +B2,P (θ) +C1,P (θ) +C2,P (θ), say.

Therefore, it suffices to show that AQ → AP , supθ∈Θ |Bi,Q(θ) − Bi,P (θ)| → 0 and
supθ∈Θ |Ci,Q(θ)−Ci,P (θ)| → 0 for i= 1,2. The first part AQ →AP is because of Condi-
tion (C3). Denote B1,Q(θ) =

∑4
k=1B1,k,Q and B1,P (θ) =

∑4
k=1B1,k,P . Then for each k,

using the triangle inequality, we obtain

|B1,k,Q(θ)−B1,k,P (θ)| ≤D1(θ) +D2(θ) +D3(θ), (D.5)

where

D1(θ) =
∣∣∣Q̂h[{XT(βk − β̂k)}21(k)(γ̂)1(k)(γ)]− Q̂h[{XT(βk −β0,k)}21(k)(γ̂)1(k)(γ)]

∣∣∣ ,
D2(θ) =

∣∣∣Q̂h[{XT(βk −β0,k)}21(k)(γ̂)1(k)(γ)]− Q̂h[{XT(βk −β0,k)}21(k)(γ0)1
(k)(γ)]

∣∣∣ ,
D3(θ) =

∣∣∣Q̂h[{XT(βk −β0,k)}21(k)(γ0)1
(k)(γ)]− P0[{XT(βk −β0,k)}21(k)(γ0)1

(k)(γ)]
∣∣∣ .

For D1(θ), it can be bounded by

sup
θ∈Θ

D1(θ)≤ sup
θ∈Θ

Q̂h

∣∣∣∣{XT(βk − β̂k)
}2

− {XT(βk −β0,k)}2
∣∣∣∣

=sup
θ∈Θ

Q̂h

∣∣∣{XT

(
2βk − β̂k −β0,k

)}{
XT

(
β0,k − β̂k

)}∣∣∣
≤
√

Q̂h

{
XT

(
β0,k − β̂k

)}2
sup
θ∈Θ

√
Q̂h

{
XT

(
2βk − β̂k −β0,k

)}2
, (D.6)

where (D.6) converges to 0 is because its first term converges to 0 by β0,k → β̂k and Cauchy-
Schwartz inequality, and its second term is uniformly bounded since limsupT Q̂h

{
‖X‖4

}
<

∞ and Θ is compact. For D2(θ),

D2(θ)≤Q̂h

∣∣∣{XT(βk −β0,k)}2 1(k)(γ)
{
1(k)(γ̂)− 1(k)(γ0)

}∣∣∣√
Q̂h

[
{XT(βk −β0,k)}4

]√
Q̂h

{∣∣1(k)(γ̂)− 1(k)(γ0)
∣∣}, (D.7)

where the first term on the right-hand side is uniformly bounded and the second term
converges to zero by the dominated convergence theorem and γ̂ → γ0 in (C1), we have
supθ∈ΘD2(θ)→ 0. For D3(θ), let δi be the i-th element of βk −β0,k, then

D3(θ)≤
∑
i,j∈[p]

δiδj

∣∣∣Q̂h

{
XiXj1

(k)(γ0)1
(k)(γ)

}
− P0

{
XiXj1

(k)(γ0)1
(k)(γ)

}∣∣∣ .
By the compactness of Θ, δiδj is uniformly bounded. Then from (D.3) in (C4), we obtain
supθ∈ΘD3(θ)→ 0. By (D.5) and triangle inequality, supθ∈Θ |B1,k,Q(θ)−B1,k,P (θ)| → 0.
Summing accross k results in supθ∈Θ |B1,Q(θ)−B1,P (θ)| → 0.

With the same argument as above except for replacing βk by βj and 1(k)(γ) by 1(j)(γ),
we can show supθ∈Θ |B2,Q(θ)−B2,P (θ)| → 0. Similarly, using the above decomposi-
tion argument and with Conditions (C2), (C4) and (C1), it can be readily shown that
supθ∈Θ |Ci,Q(θ)−Ci,P (θ)| → 0 for i= 1,2. Combining the above pieces gives

sup
θ∈Θ

∣∣∣Q̂h {m(W ,θ)} − P0 {m(W ,θ)}
∣∣∣→ 0. (D.8)
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Because (i) Q̂∗
h is the empirical measure of Q̂h, (ii) Q̂h {supθ∈Θm(W ,θ)} <∞ by the

condition (C2) and the compactness of Θ, and (iii) F = {m(w,θ),θ ∈Θ} has a finite VC-
dimension, the Glivenko-Cantelli theorem implies that

sup
θ∈Θ

∣∣∣Q̂∗
h {m(W ∗,θ)} − Q̂h {m(W ,θ)}

∣∣∣ P−→ 0. (D.9)

Consequently, from (D.8) and (D.9) we have

sup
θ∈Θ

∣∣∣Q̂∗
h {m(W ∗,θ)} − P0 {m(W ,θ)}

∣∣∣ P−→ 0. (D.10)

Because of (D.10) together with the facts that θ 7→ P0 {m(W ,θ)} is continuous and θ0 is the
unique minimizer of P0 {m(W ,θ)} as established in Appendix B, it follows that θ̂∗ P−→ θ0
using the similar arguments as in Section B.2.

LEMMA D.2. Assume that Assumptions 1-5 and Conditions (C1)–(C6) hold. Then√
mT (β̂

∗ − β̂) =Op(1) and mT (γ̂
∗ − γ) =Op(1).

Proof. From Lemma D.1 we know that β̂∗ − β̂ = op(1) and γ̂∗ − γ = op(1). The proof of
the convergence rate of β̂∗ and γ̂∗ is analogous to the proof of β̂ and γ̂ in Appendix B.

First, because of the conditional zero mean condition of ε in (C3), we can decompose
Q̂h {m(W ,θ)−m(W ,θQ)} as

Q̂h {m(W ,θ)−m(W ,θQ)}=
4∑
j=1

Q̂h[{XT(β̂j −βj)}21(j)(γ̂)1(j)(γ)]

+

4∑
i=1

4∑
k ̸=i

Q̂h[(X
T (βQ,i −βk))2 1(i)(γ̂)1(k)(γ)]

=:

4∑
j=1

JQj (θ) +

4∑
i=1

4∑
k ̸=i

GQik(θ), say. (D.11)

Because γ̂→ γ0 and (D.3), it can be shown that

sup
i,j∈[p]

sup
γ∈Γ

∣∣∣Q̂h

{
XiXj1

(j)(γ̂)1(j)(γ)
}
− P0

{
XiXj1

(j)(γ0)1
(j)(γ)

}∣∣∣→ 0, (D.12)

following similar arguments as for D2(θ) and D3(θ) in the previous lemma. Since the small-
est eigenvalue of P0

{
XXT1(j)(γ0)1

(j)(γ)
}

is uniformly bounded away from 0, (D.12) im-
plies that the smallest eigenvalue of Q̂h

{
XXT1(j)(γ̂)1(j)(γ)

}
is uniformly bounded away

from 0 if γ is in some neighborhood of γ0, for T ≥ T0 with some T0 > 0, because the entry-
wise convergence of matrices can imply the convergence of eigenvalues, which can be easily
seen from the perspective of characteristic polynomials. This implies that

JQj (θ)≥ ‖β̂j −βj‖2,

for j ∈ {1, · · · ,4} and T ≥ T0.
With Conditions (C4) and (C5), which imply that Assumptions 3.(ii), 4.(i) and 4.(iii) hold

when replacing P with Q̂h, the moment inequalies in Lemma A.2 hold under the bootstrap
population Q̂h. Then, with the same argument as in Step 1 of the proof of Theorem 3.1, it
can be shown that for any γ in some neighborhood of γ̂,

JQkl (θ) + JQil (θ)

2
+GQilkl(θ) +GQklil(θ)≳

(
‖βQ,il −βil‖2 + ‖βQ,kl −βkl‖2 + ‖γ̂l − γl‖

)
,
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where kl and il are defined the same as in Appendix B, which further implies

Q̂h {m(W ,θ)−m(W ,θQ)}≳ ‖β̂−β‖2 + ‖γ̂ − γ‖, (D.13)

for γ in some neighborhood of γ̂.
Let G∗

T =
√
mT (Q̂∗

h − Q̂h). By inspecting the proofs of Lemmas A.4–A.6, we notice that
these lemmas can be established once we have the moment inequalities outlined in Lemma
A.3, whose conditions hold if we replace the population P0 by Q̂∗

h. Therefore, we can replace
GT in Lemma A.6 by G∗

T , under Conditions (C4)–(C6). Then, with the same arguments as
in Step 2 in Section B.4, we obtain

‖β̂∗ −β‖2 + ‖γ̂∗ − γ‖≲ ‖β̂∗ − β̂‖2op(1) + 4λ‖γ̂∗ − γ̂‖+Op(m
−1
T ),

for any λ ∈ (0,1), which implies that ‖β̂∗ − β̂‖2 = Op(m
−1
T ), and thus ‖γ̂∗ − γ̂‖ =

Op(m
−1
T ).

We now proceed to derive a result similar to Lemma B.1.

LEMMA D.3. Assume that Assumptions 1-5 and Conditions (C1)–(C6) hold. Then uni-
formly for h= (uT,vT)T in any compact set in R4p+d1+d2 ,

mT Q̂∗
h

{
m(W ∗, β̂+

u
√
mT

, γ̂ +
v

mT
)−m(W , β̂, γ̂)

}
=D∗

T (v)− 2W ∗
T (u) + oP (1), (D.14)

where

W ∗
T (u) =

4∑
j=1

[√
mT Q̂∗

h

{
uT

jXεQ1
(j)(γ̂)

}
+uT

j Q̂h

{
XXT1(j)(γ̂)

}
uj

]
,

and

D∗
T (v) =

2∑
l=1

∑
(j,k)∈S(l)

mT Q̂∗
h

[
ξ
(j,k)
Q 1

{
s
(j)
l

(
mT ql,Q +ZT

−1,lv−1,l

)
≤ 0< s

(j)
l mT ql,Q

}]
,

with ξ
(j,k)
Q =

(
δ̂T

jkXX
Tδ̂jk + 2XTδ̂jkεQ

){
1(j)(γ̂) + 1(k)(γ̂)

}
,

where δ̂jk = β̂j − β̂k, ql,Q =ZT

l γ̂l, S(l) is the set of indices of adjacent regions split by the
l-th hyperplane as defined in (3), and s(j)l = sign(zTγl0) for z ∈D(j)(γ0) as defined in (2).

Proof. The left-hand side of (D.14) can be decomposed in the same way as (B.32) in the proof
of Lemma B.1. It is noted that Lemma B.1 is established by showing the decomposed terms
in (B.32) besides DT (v) and WT (u) all converge to 0 in probability with the application of
Lemma A.5. With Conditions (C4)–(C6), Lemma A.4 holds with GT replaced by G∗

T . It can
be derived with similar lines of the proof of Lemma A.5 that

sup
∥γl−γQ,l∥≤m−1

T

√
mT Q̂∗

h {U |1j(γj)− 1j(γQ,j)| |1l(γl)− 1l(γ̂l)|}= op(1),

sup
∥γj−γQ,j∥≤m−1

T

∥γl−γQ,l∥≤m−1
T

mT Q̂∗
h {U |1j(γj)− 1j(γQ,j)| |1l(γl)− 1l(γ̂l)|}= op(1), (D.15)
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for U = ‖X‖2 and U = |εQ|‖X‖. Then, the above lemma can be proved by following the
same arguments as in Section B.6.

LEMMA D.4. Assume that Conditions (C1)–(C7) hold. Then the finite-dimensional weak
limit of D∗

T (v) is the same as D(v) as presented in Lemma B.2.

Proof. The derivation of the finite-dimensional weak limit of D∗
T (v) is in parallel to that of

DT (v) in the proof of Lemma B.2.
First, as (B.48) in Part 1, D∗

T (v) can be expressed as a sum of functionals of some em-
pirical point processes. For each l ∈ {1,2} and (j, k) ∈ S(l), we define an empirical point
process N̂(j,k)

Q,l,T (·) ∈Mp(El), where El =Rs(j)l
×Z−1,l ×R as:

N̂
(j,k)
Q,l,T (F ) :=mT Q̂∗

h

[
1
{
(mT ql,Q,Z−1,l, ξ

(j,k)
Q ) ∈ F

}]
, (D.16)

for each F = (F1,F2,F3) ∈El. Then D∗
T (v) can be expressed as

D∗
T (v) =

2∑
l=1

∑
(j,k)∈S(l)

T (j,k)
l,vl

(
N̂

(j,k)
Q,l,T

)
. (D.17)

where the functional T (j,k)
l,vl

is defined in (B.47).

Second, we derive the weak limit of N̂(j,k)
Q,l,T as in Part 2 of the proof of Lemma B.2. The two

ingredients are the calculation of the limit of Q̂h

{
N̂

(j,k)
Q,l,T

}
, which is required in Kallenberg’s

theorem, and the application of Meyer’s theorem. First, for any F = (F1,F2,F3) ∈ El, the
basis of relatively compact open set in El, we claim that:

lim
T,mT→∞

Q̂h

{
N̂

(j,k)
Q,l,T

}
= µ

(j,k)
l (F ), (D.18)

where the mean measure µ(j,k)l is defined in (B.50). This can be shown as below. Note that

Q̂h

{
N̂

(j,k)
Q,l,T

}
=mT Q̂h

[
1
{
(mT ql,Q,Z−1,l, ξ

(j,k)
Q ) ∈ F

}]
=mT

∫
mT q∈F1,z∈F2,ξ∈F3

f̃
(i,j)
Q (q,z, ξ)dqdzdξ

=

∫
q̃∈F1,z∈F2,ξ∈F3

f̃
(i,j)
Q

(
q̃

mT
,z, ξ

)
dq̃dzdξ,

where f̃ (i,j)Q (q,z, ξ) is the joint density function of (ql,Q,Z−1,l, ξ
(i,j)
Q ) under Q̂h. The claim

(D.18) can be verified as follows.∫
q̃∈F1,z∈F2,ξ∈F3

f̃
(i,j)
Q

(
q̃

mT
,z, ξ

)
dq̃dzdξ

=

∫
q̃∈F1,z∈F2,ξ∈F3

f̃ξ(j,k)
Q |(ql,Q,Z−1,l)

(
ξ| q̃
mT

,z

)
f̃ql,Q|Z−1,l

(
q̃

mT
|z
)
f̃Z−1,l

(z)dq̃dzdξ

(i)→
∫
q̃∈F1,z∈F2,ξ∈F3

f̃ξ(j,k)
Q |(ql,Q,Z−1,l)

(ξ|0,z) f̃ql,Q|Z−1,l
(0|z) f̃Z−1,l

(z)dq̃dzdξ (as mT →∞)

=

∫
q̃∈F1,z∈F2

Q̂h

{
ξ
(j,k)
Q ∈ F3|ql,Q = 0,Z−1,l = z

}
f̃ql,Q|Z−1,l

(0|z) f̃Z−1,l
(z)dq̃dz
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(ii)→
∫
q̃∈F1,z∈F2

P0

{
ξ(j,k) ∈ F3|ql = 0,Z−1,l = z

}
fql|Z−1,l

(0|z)fZ−1,l
(z)dq̃dz (as T →∞)

=

∫
q̃∈F1,z∈F2,ξ∈F3

fξ(i,j)|(ql,Z−1,l) (ξ | 0,z)fql|Z−1,l
(0 | z)fZ−1,l

(z)dq̃dzdξ

=µ
(j,k)
l (F ),

where (i) is implied by the dominated convergence theorem because of the continu-
ity and boundness of f̃ξ(j,k)

Q |(ql,Q,Z−1,l)
(ξ|q,z) and f̃ql,Q|Z−1,l

(q|z) at q = 0 as assumed

in (C7). For (ii), since the characteristic function of ξ
(i,j)
Q |ql,Q,Z−1,l under Q̂h con-

verges to that of ξ(i,j)|ql,Z−1,l under P0, then Q̂h

{
ξ
(j,k)
Q ∈ F3|ql,Q = 0,Z−1,l = z

}
→

P0

{
ξ(j,k) ∈ F3|ql = 0,Z−1,l = z

}
. In addition, it is easy to see that

sup
z∈Z−1,l

∣∣∣f̃ql,Q|Z−1,l
(0|z) f̃Z−1,l

(z)− fql|Z−1,l
(0|z)fZ−1,l

(z)
∣∣∣→ 0

as T →∞, due to ‖f̃Zl
− fZl

‖∞ → 0 assumed in (C7). Then (ii) follows from the dominated
convergence theorem.

Since observations under Q̂∗
h are i.i.d., for any F with µ(j,k)l (F ) > 0, Meyer’s theorem

implies that

lim
mT→∞

Q̂h

{
1
(
N̂

(j,k)
Q,l,T = 0

)}
= e−µ

(j,k)
l (F ). (D.19)

For F with µ
(j,k)
l (F ) = 0, (D.19) also holds, since in such the case (D.18) implies

Q̂h

{
N̂

(j,k)
Q,l,T (F )

}
→ 0 as T →∞, which further implies that Q̂h

{
1
(
N̂

(j,k)
Q,l,T = 0

)}
= 1 =

e−µ
(j,k)
l (F ). Since µ(j,k)l is the mean measure of N

(j,k)
l introduced in Part 2 of the proof

of Lemma B.2, with the statements (D.18) and (D.19), Kallenberg’s theorem (Lemma A.7)
implies that for each l ∈ {1,2} and (j, k) ∈ S(l), we have N̂

(j,k)
Q,l,T ⇒ N

(j,k)
l in Mp(El) as

mT , T →∞. Therefore, N̂(j,k)
Q,l,T has the same weak limit as N̂(j,k)

l,T .

As derived in Part 3 of the proof of Lemma B.2, the point process N
(j,k)
l has the repre-

sentation (B.55). By inspecting Part 4 of the proof of Lemma B.2 which shows the asymp-
totical independence of

(
N̂

(j,k)
l,T , l ∈ {1,2}, (j, k) ∈ S(l)

)
, we find that to show the asymp-

totical independence of
(
N̂

(j,k)
Q,l,T , l ∈ {1,2}, (j, k) ∈ S(l)

)
, it suffices to show that (B.59)

holds if P is replaced by Q̂h, which is indeed true since ‖f̃Z − fZ‖∞ → 0 and the uni-
form boundness of f(ql,ql′ )|(Z−1,l,Z−1,l′ )(q, q

′) at a neighborhood of (0,0) implies the uniform
boundness of f̃(ql,Q,ql′,Q)|(Z−1,l,Z−1,l′ )(q, q

′) at the neighborhood, which ensures (B.59) holds
when replacing P is replaced by Q̂h. The rest arguments in Part 3 of the proof of Lemma
B.2 obviously hold under Q̂h and Q̂∗

h, since the observations under PT are weakly depen-
dent and the observations under Q̂∗

h are i.i.d. Therefore, the asymptotical independence of(
N̂

(j,k)
Q,l,T , l ∈ {1,2}, (j, k) ∈ S(l)

)
can be established.

As for adapting Part 4 of the proof of Lemma B.2, it is sufficient to verify that (I)–(III)
therein hold under Q̂h. Let

RQ,T = T (j,k)
l,vl

(
N̂

(j,k)
Q,l,T

)
and RQ,T,M =

∫
El,M

g
(j,k)
l (x,y, z)dN̂

(j,k)
Q,l,T (x,y, z).
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For (I), the arguments, which is mainly the continuous mapping theorem, for showing
RT,M ⇒R0,M also implies RQ,T,M ⇒R0,M , since the probability of discontinuities is eval-
uated under the distribution of the limiting process N(j,k)

l . For (II), with the notations in (II)
in Part 4 of the proof of Lemma B.2, we first have

|RQ,T −RQ,T,M |=mT Q̂∗
h

{
|ξ|1 (|ξ| ≥M)1

(
mT qQ,l +Z

T

−1v−1,l ≤ 0<mT qQ,l
)}

=:mT Q̂∗
h(GQ(M)), say. (D.20)

With Condition (C4) we have Q̂h

{∣∣∣ξ(j,k)Q

∣∣∣4 |ZT

l γ = 0

}
< C for some C <∞ if γ is in

some neighborhood of γ̂l and each l ∈ {1,2}. As in (B.74) it can be readily shown that Q̂h

Q̂h {|ξ|1 (|ξ| ≥M) |ZT

l γ = 0}=O(M−1). (D.21)

Using (D.21) and with the similar arguments as in the proof of Lemma A.4 (i), we can show
that which implies Q̂h {|Gt(M)|}=O((MmT )

−1) , which implies Q̂h {|RQ,T −RQ,T,M |}=
O(M−1) due to (D.21). Then

lim
M→∞

limsup
T→∞

Q̂h {|RQ,T −RQ,T,M |> ε}→ 0,

for any ε > 0 according to the Markov inequality, which verifies (II). Since (III) in
Part 4 of the proof of Lemma B.2 is for the truncation error of R0 = T (j,k)

l,vl

(
N

(j,k)
l,T

)
,

which is regardless of P0 or Q̂h, it also holds under the bootstrap scenario. There-
fore, with (I)–(III) and by applying Theorem 4.2 of Billingsley (1968), RT,Q ⇒ R0

as mT ,→ ∞, i.e., T (j,k)
l,vl

(
N̂

(j,k)
Q,l,T

)
⇒ T (j,k)

l,vl

(
N

(j,k)
l,T

)
. Because it has been shown that(

N̂
(j,k)
Q,l,T , l ∈ {1,2}, (j, k) ∈ S(l)

)
are asymptotically independent, we conclude that

D∗
T (v) =

L∑
l=1

∑
(j,k)∈S(l)

T (j,k)
l,vl

(
N̂

(j,k)
Q,l,T

)
⇒

L∑
l=1

∑
(j,k)∈S(l)

T (j,k)
l,vl

(
N

(j,k)
l,T

)
, (D.22)

as mT , T →∞, where the right-hand side of (D.22) is identical to that of (B.77), which is
the weak limit of DT (v), the proof is completed.

Let γ̂∗c = C(Ĝ∗) be the centriod of the LSEs γ̂∗ obtained with the bootstrap resample.
Let L∗

T be the distribution of {mT (γ̂
∗c − γ̂c),√mT (β̂

∗ − β̂)} and LT be the distribution of
{T (γ̂c − γ0),

√
T (β̂ − β0)}. The s.e-l-sc of {D∗

T } can be obtained with the same proof as
for Lemma B.3. With the same arguments as the proof for Theorem 3.3, we can establish that
L∗
T has the same limiting distribution as that of LT , which implies the following result.

LEMMA D.5. Assume that Conditions (C1)–(C7) hold, then ρ(L∗
T ,LT )→ 0 as T,mT →

∞, for any metric ρ that metrizes weak convergence of distributions.

D.2. Proof of Theorem 5.1.

PROOF. To show the validity of the smoothed regression bootstrap, we just need to verify
Conditions (C1)–(C7) hold with the probability approaching 1, conditionally on the data
{Wt = (Yt,Xt,Zt)}Tt=1, where under the bootstrap distribution Q̂h, the bootstrap sample
(X∗,Z∗)∼ F̃ (x,z), whose density function is the nonparametric density estimator f̃(x,z).
First, under Assumptions 6.(i) and (iii), we have ‖f̃(x,z)−f(x,z)‖∞ = op(1), as a standard
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result in kernel regression estimation (Györfi et al., 1989 and Hansen, 2008). Conditioning
on (X∗,Z∗), the noise ε∗ ∼ σ̃(X∗,Z∗)e∗, where e∗ ∼ F̂e which is independent of f̃(x,z).
The bootstrap response is generated from

Y ∗ =

4∑
k=1

(X∗)Tβ̂k1{Z∗ ∈Rk(γ̂)}+ ε∗Q. (D.23)

Condition (C1) is a direct consequence of Theorem 3.1. Let f̃(x) =
∫
f̃(x,z)dz and f(x)

be the density of X under P0. Then we have ‖f̃(x)− f(x)‖∞ converges to 0 in probability,
which is implied by ‖f̃(x,z)− f(x,z)‖∞

P−→ 0 and the dominidated convergence theorem.
Therefore, Q̂h(‖X‖4) =

∫
‖x‖4f̃(x)dx converges to P0(‖X‖4) <∞ by the dominidated

convergence theorem, which verifies the first condition in (C2). For the second condition of
the boundness of Q̂h(ε

4), we notice that by the independence of F̂e and f̃(x,z),

Q̂h(ε
4) =

∫
σ̃4(X,Z)e4f̃(x,z)dxdzdF̂e(e), (D.24)

which is Op(1) because of (v) of Lemma D.6, the uniform boundness of σ̃(x,z) and f̃(x,z),
which are also compactly supported. Therefore, we conclude that (C2) holds in probability
approaching 1. Because ε = σ̃(X,Z)e, where e ∼ F̂e is independent of (X,Z) and has a
zero mean, it holds that Q̂h (ε|X,Z) = 0. As a standard result in local linear regression,
Assumptions 6. (i) and (ii) imply ‖σ̃(x,z) − σ(x,z)‖∞

P−→ 0, which together with (iv) of
Lemma D.6 leads to Q̂h(ε

2
Q)

P−→ P0(ε
2). Therefore, Condition (C3) holds in probability. Be-

cause (X,Z) has a compact support and ‖f̃(x,z)−f(x,z)‖∞
P−→ 0, applying the dominated

convergence therorem yields that (D.3) holds in probability. Therefore, (C4) is ensured.
To show (C5), we first note that for any l ∈ {1,2},∣∣∣f̃ql,Q|Z−1,l

(q|z)− fql|Z−1,l
(q|z)

∣∣∣= ∣∣∣∣∣ f̃ql,Q,Z−1,l
(q,z)

f̃Z−1,l
(z)

−
fql,Z−1,l

(q,z)

fZ−1,l
(z)

∣∣∣∣∣ P−→ 0, (D.25)

for q and z uniformly. Since fql|Z−1,l
(q|z) is bounded for each z ∈Z−1,l and ql in the neigh-

borhood of 0 as required in Assumption 5. (ii), (D.25) implies that f̃ql,Q|Z−1,l
(q|z) is bounded

in probability. Then using the dominated convergence theorem, Condition (C5) can be shown.
Assumption 6. (i) requires that X ×Z is compact and implies that fX|Z is bounded. Hence,
for any finite r,

Q̂h (‖X‖r|ZT

l γ = 0) =

∫
X×Z

‖x‖r1(zTγ = 0)
f̃X,Zl

(x,z)

f̃Zl
(z)

dxdz

P−→ P0 (‖X‖r|ZT

l γ = 0) , (D.26)

by the dominated convergence theorem. With the consistency of γ̂ and Assumption 4, (D.26)
implies the first two conditions in Condition (C6). Since

Q̂h (ε
r|ZT

l γ = 0) =

∫
R
xrdF̂e(x)

∫
X×Z

σ̃(x,z)1(zTγ = 0)
f̃X,Zl

(x,z)

f̃Zl
(z)

dxdz,

using Lemma D.6 (v) and Assumption 6. (ii) ensures that Q̂h (ε
r|ZT

l γ = 0) <∞ for the r
specified in Assumption 4 (iv). Hence, Condition (C6) is verified.
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For (C7), (i) is a direct consequence of ‖f̃(x,z) − f(x,z)‖∞
P−→ 0. For (ii), recall

that ξ(j,k)Q =
(
δ̂T

jkXX
Tδ̂jk + 2XTδ̂jkσ̃(X,Z)eQ

){
1(j)(γ̂) + 1(k)(γ̂)

}
, to emphasis it is

a function of (X,Z, e, θ̂), we write ξ(j,k)Q = ξ(X,Z, e, θ̂). Then,

Q̂h

{
eitξ

(j,k)
Q |ql,Q = 0,Z−1,l

}
=

∫
eitξ(x,z,e,θ̂)1(zTγ̂l = 0)

f̃X,Zl
(x,z)

f̃Zl
(z)

dxdzdF̂e(e)

P−→
∫
eitξ(x,z,e,θ0)1(zTγl0 = 0)

fX,Zl
(x,z)

fZl
(z)

dxdzdFe(e)

=P0

{
eitξ

(j,k) |ql = 0,Z−1,l

}
, (D.27)

by Lemma D.6 (i) and the dominated convergence theorem. Therefore, (C7) (ii) holds in
probability. Finally, for (C7) (iii) we note that for each l ∈ {1,2},z−1,i ∈ Z−1,l, q ∈ R and
ε > 0, there exists δ > 0 such that if |q|< δ,

|f̃ql|Z−1,l
(q|Z−1,l)− f̃ql|Z−1,l

(0|Z−1,l)|

≤
2∑
i=1

|f̃ql|Z−1,l
(qi|Z−1,l)− fql|Z−1,i

(qi|Z−1,l)|+ |fql|Z−1,l
(q|Z−1,l)− fql|Z−1,l

(0|Z−1,l)|,

where q1 = q and q2 = 0. With (D.25), which shows the first term of the right-hand side of
the above inequality is op(1), and Assumption 5. (ii), which implies that for any ε > 0, there
exists δ > 0 such that the second term is less than ϵ provided that |q|< δ, it can be shown that
f̃ql|Z−1,l

(q|Z−1,l) is continuous at 0 for each z−1,l in probability. Similarly, the continuity
of f̃ξ(j,k)

Q |(ql,Q,Z−1,l)
(ξ|q,z) can be shown. Hence, Condition (C7) holds with the probability

approaching 1. Finally, with Conditions (C1)–(C7) verified, Theorem 5.1 follows by applying
Lemma D.4.

LEMMA D.6. Let Fe and φe be the distribution function and characteristic function of
e, respectively. Then under Assumptions 1-6,

(i) for any η > 0, sup|ξ|≤η
{∣∣∣∫ exp(iξx)dF̂e −φe(ξ)

∣∣∣} P−→ 0;

(ii) ‖F̂e − Fe‖∞
P−→ 0;

(iii)
∫
|x|dF̂e(x)

P−→ P0(|e|);
(iv)

∫
x2dF̂e(x)

P−→ 1;
(v)
∫
xrdF̂e(x) =Op(1), where r is specified in Assumption 4.

PROOF. (i) Let FT,e be the empirical distribution function of {et}Tt=1. Note that∫
exp(iξx)dF̂e(x) = exp (−itēT )PT {exp (iξêt)} .

Hence, for any |ξ| ≤ η with η > 0, we have∣∣∣∣∫ exp(iξx)dF̂e − exp (−iξēT )
∫

exp(iξx)dFT,e(x)

∣∣∣∣
= |PT {exp (iξêt)} − PT {exp(iξet)}| ≤ |η|PT (|êt − et|) . (D.28)

We claim that

PT (|êt − et|)
P−→ 0, (D.29)
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which will be shown later. Then (D.28) implies that

sup
|ξ|≤η

{∣∣∣∣∫ exp(iξx)dF̂e − exp (−iξēT )
∫

exp(iξx)dFT,e(x)

∣∣∣∣} P−→ 0, (D.30)

and Lemma D.6 (i) follows from the facts that ēT = PT (êt)
P−→ 0, and

sup
|ξ|≤η

|PT {exp(iξet)} − P0 {exp(iξet)}|
P−→ 0

by the ULLN under mixing sequences.
It remains to verify the claim (D.29). For notational simplicity, we denote σ̂t := σ̃(Xt,Zt)

and σt := σ(Xt,Zt). Then sup1≤t≤T |σt − σ̂t|= op(1) by Assumption 5.(ii). Note that

êt =
Yt −

∑4
k=1X

T

t β̂k1
(k)
t (γ̂)

σ̂t

=

∑4
j=1X

T

t

(
β̂j −βj0

)
1
(j)
t (γ0)1

(j)
t (γ̂)

σ̂t
+

∑4
j=1

∑K
i ̸=jX

T

t

(
β̂i −βj0

)
1
(i)
t (γ0)1

(j)
t (γ̂)

σ̂t

+
σt − σ̂t
σ̂t

et + et =:E1,t +E2,t +E3,t + et, say. (D.31)

Denote Êk,T = PT (|Ek,t|) for k = 1,2,3. Then to show (D.29), it suffices to show Êk,T
P−→ 0

as T →∞. For the first term E1,T , we have

Ê1,T ≤
4∑
j=1

PT


∣∣∣∣∣∣
XT

t

(
β̂j −βj0

)
1
(j)
t (γ0)1

(j)
t (γ̂)

σ̂t

∣∣∣∣∣∣


≤
4∑
j=1

PT


∣∣∣∣∣∣
XT

t

(
β̂j −βj0

)
σt + op(1)

∣∣∣∣∣∣
≤

4∑
j=1

PT

{∣∣∣∣∣‖Xt‖‖β̂j −βj0‖
σt + op(1)

∣∣∣∣∣
}

=Op(T
−1/2), (D.32)

since σt > σ > 0 and ‖β̂j − βj0‖=Op(T
−1/2). For the second term E2,T , it is op(1) if for

each i 6= j ∈ {1, · · · ,4}, PT
{∣∣∣XT

t

(
β̂i −βj0

)
1
(i)
t (γ0)1

(j)
t (γ̂)/σ̂t

∣∣∣}= op(1), which can be
shown as

PT


∣∣∣∣∣∣
XT

t

(
β̂i −βj0

)
1
(i)
t (γ0)1

(j)
t (γ̂)

σ̂t

∣∣∣∣∣∣


≤PT

{∣∣∣∣∣XT

t (β̂i −βi0)
σ̂t

∣∣∣∣∣
}

+ PT

{∣∣∣∣∣XT

t δij,01
(i)
t (γ0)1

(j)
t (γ̂)

σ̂t

∣∣∣∣∣
}
,

where the first term is Op(T−1/2) from the same reason as for (D.32). For the second term,

PT

{∣∣∣∣∣XT

t δij,01
(i)
t (γ0)1

(j)
t (γ̂)

σ̂t

∣∣∣∣∣
}

≤
L∑
l=1

PT
{
‖Xt‖‖δij,0‖
σt + op(1)

|1l,t(γl0)− 1l,t(γ̂l)|
}
,
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which is Op(T
−1) because of (A.20) in Lemma A.4. Therefore, we obtain Ê2,T =

Op(T
−1/2). For the third term Ê3,T , it holds that

Ê3,T = PT
(∣∣∣∣σt − σ̂t

σ̂t
et

∣∣∣∣)≤

√√√√PT

(∣∣∣∣σt − σ̂t
σ̂t

∣∣∣∣2
)√

PT (e2t ).

Since PT (e2t ) =Op(1), and |σt − σ̂t|= op(1), σt < σ uniformly for t ∈ {1, · · · , T}, it yields
that E3,T = op(1). Combining with (D.31), it yields that for any t ∈ {1, · · · , T}.

PT (|êt − et|)≤ Ê1,T + Ê2,T + Ê3,T = op(1), (D.33)

which verifies the claim (D.29), and thus completes the proof for (i).
(ii) By Levy-Cramer continuity theorem, (i) implies that F̂e(x) = Fe(x) + op(1) for any

x ∈R. Then (ii) follows from the continuity of Fe and Polya’s theorem.
(iii) Note that ∣∣∣∣∫ |x|dF̂e(x)− PT (|et|)

∣∣∣∣= |PT (|êt − ēT | − |et|)|

≤PT (|êt − et|) + |ēT |
P−→ 0,

implied by (D.29) and ēT = PT (êt)
P−→ 0. Because PT (|et|) = P0(|e|) + op(1) by the weak

law of large numbers, the conclusion (iii) follows.
(iv) Since

∫
x2dF̂e(x) = PT

(
ê2t
)
− (ēT )

2 = PT
(
ê2t
)
+ op(1) and PT (e2t ) = P0(e

2) +

op(1) = 1+ op(1), to show (iv) it is sufficient to show that PT
(
ê2t
)
− PT (e2t ) = op(1). From

(D.31) we have

ê2t − e2t = (E1,t +E2,t +E3,t)
2 + 2(E1,t +E2,t +E3,t)et, (D.34)

which implies that∣∣PT (ê2t )− PT (e2t )
∣∣≤PT

(∣∣ê2t − e2t
∣∣)

≤3

3∑
i=1

PT (E2
i,t) + 2

√√√√PT {(
3∑
i=1

Ei,t)2}
√

PT (e2t )

≤3

3∑
i=1

PT (E2
i,t) + 2

√√√√3

3∑
i=1

PT (E2
i,t)
√

1 + op(1),

by the Cr and Cauchy-Schwartz inequalities. Therefore, PT
(
ê2t
)
− PT (e2t ) = op(1) if

PT (E2
i,t) = op(1) for i = 1,2,3. Since this can be shown in the almost same way as for

showing PT (|Ei,t|) = op(1) in the proof of (i), we omit the detailed proof here for simplicity.
(v) Note that ∫

|x|rdF̂e(x)≤
r∑
i=0

(
r

i

)
|ēT |iPT (êr−it ), (D.35)

and |ēT |i = |PT (êt)|i = op(1) for each 1 ≤ i ≤ r. Using the expansion (D.31) and the fact
that PT (|et|i) = P0(|et|i)+ op(1), it is straightforward to show that PT (êit) =Op(1) for each
1≤ i≤ r. Therefore, the desired result (v) is verified.
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APPENDIX E: PROOFS FOR SECTION 6

E.1. Proof of Theorem 6.1. In this subsection, we present the proof for Theorem 6.1
of the main paper on the convergence of the four-regime based LS estimator under the seg-
mented models with less than four regimes.

PROOF. Suppose that the true model is

Y =

K0∑
k=1

XTβk01{Z ∈Rk(γ0)}+ ε, (E.1)

where the number of regimes K0 ≤ 4 and the number of splitting hyperplanes L0 ≤ 2. In
particular, Rk(γ0) = Z1 ×Z2 for the global linear model (K0 = 1), the splitting coefficient
γ0 = γ10 or γ20 for L0 = 1, and γ0 = (γT

10,γ
T

20)
T for L0 = 2.

For a candidate θ = (γ,β), we let {R(4)
j (γ)}4j=1 be the four regimes under γ, and denote

G = {γ1,γ2} and B = {β1, · · · ,β4}. Then, the population of the LS criterion function based
on the four-regime model is

M(θ) = E[{Y −
4∑
j=1

XTβj1{Z ∈R(4)
j (γ)}}2].

Suppose that when the data is generated from Model (E.1) with K0 ≤ 4, M(θ) is minimized
at θ∗ = (γT

∗ ,β
T

∗ )
T. Let G∗ = {γ1∗,γ2∗} and B∗ = {β1∗, · · · ,β4∗}, representing the true pa-

rameters under the four-segment model. In the case ofK0 = 4, we have shown that θ∗ = θ0 in
Proposition 1. Now we show that when K0 < 4, the true parameters γ0 and β0 are elements
of G∗ and B∗, respectively. That is, we are to show that d(γ0,G∗) = 0 and d(βk0,B∗) = 0 for
k = 1,2. Without loss of generality, we take L0 = 1 and K0 = 2 in this proof, which makes
Model (E.1) to be the two-regime model (6.3) of the main paper. The proof for the other
degenerated models can be shown similarly.

Note that

M(θ) = E[{Y −
4∑
j=1

XTβj1{Z ∈R(4)
j (γ)}}2]

= E[ε2 + {
2∑

k=1

XTβk01{Z ∈Rk(γ0)} −
4∑
j=1

XTβj1{Z ∈R(4)
j (γ)}}2]

= E(ε2) +
2∑

k=1

4∑
j=1

E[{XT(βk0 −βj)}21{Z ∈Rk(γ0)∩R
(4)
j (γ)}]

= E(ε2) +
2∑

k=1

4∑
j=1

Ak,j(θ), say, (E.2)

where the second equality is due to E(ε|X,Z) = 0. At θ = θ∗, it can be shown that
Ak,j(θ∗) = 0 for any k, j. Hence M(θ∗) = E(ε2).

Suppose that d(γ0,G) 6= 0, namely γ1 6= γ0 and γ2 6= γ0. Then the true splitting hyper-
plane H0 : z

Tγ0 = 0 will partition through at least one region R(4)
j (γ) for j ∈ {1, · · · ,4}. By

Assumption S2 (i) we have P
{
Z ∈R1(γ0)∩R(4)

j (γ)
}
> 0 and P

{
Z ∈R2(γ0)∩R(4)

j (γ)
}
>

0. Therefore,

A1,j(θ)≥ λ0‖βj −β10‖2, A2,j(θ)≥ λ0‖βj −β20‖2
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according to Assumption S2 (ii). Since β10 6= β20, either A1,j(θ)> 0 or A2,j(θ)> 0. Con-
sequently, M(θ)≥M(θ∗) +Ak,h(θ) +Aj,h(θ)>M(θ∗).

Suppose that d(γ0,G) = 0, namely γ1 = γ0 or γ2 = γ0, while d(βk0,B) 6= 0 for k ∈
{1,2}. In such case, there exits j ∈ {1, · · · ,4} such that R(4)

j (γ)⊂Rk(γ0). Hence

Ak,j(θ) = E
[
{XT

t (βj −βk0)}
2
1{Zt ∈Rk(γ0)}

]
≥ λ0‖βj −βk0‖2 > 0,

by Assumption S2 (ii). Therefore, M(θ)≥M(θ∗) +Ak,j(θ)>M(θ∗).
Combining the two cases yields that

M(θ)>M(θ∗) for any θ ∈Θ (E.3)

if either d(γ0,G) 6= 0 or d(βk0,B) 6= 0 for some k ∈ {1,2}. Therefore, θ∗ as the minimizer
of M(θ) must satisfy d(γ0,G∗) = 0 and d(βk0,B∗) = 0 for k ∈ {1,2}.

Having established the minimizer of the least square criterion function under the popu-
lation level, the rest of the proof for the convergence rate of the LS estimator under As-
sumptions S3 and S4, follows the similar arguments as in Appendix B for the four-regime
case.

E.2. Proof of Theorem 6.2.

PROOF. Suppose that the true model is given by (E.1) with the K0 true regimes being
{Rk0}K0

k=1 and the true regression coefficients are {βk0}K0

k=1 respectively. Let the estimated
regimes and the estimated regression coefficients under the four-regime model be {R̂(4)

j }4j=1

and {β̂(4)
j }4j=1, respectively.

For any 1≤K ≤ 4, let

CT (K) = log

(
ST (K)

T

)
+
λT
T
K,

where λT →∞ and λT /T → 0 as T →∞, and

ST (4) =

T∑
t=1

[
Yt −

4∑
k=1

XT

t β̂
(4)
k 1

{
Zt ∈ R̂(4)

k

}]2
.

For 1≤K ≤ 3, define recursively

ST (K) = ST (K + 1) +D
(K+1)
T (̂i, ĥ),

where (̂iK+1, ĥK+1) = argminAk+1
D

(K+1)
T (i, h) and

D
(K)
T (i, h) =min

β∈B

T∑
t=1

[Yt −XT

t β1{Zt ∈ R̂
(K)
i ∪ R̂(K)

h }]2

−
T∑
t=1

[Yt −
∑
k=i,h

XT

t β̂
(K)
k 1{Zt ∈ R̂(K)

k }]2

=:S
(K)
i,h − T

(K)
i,h , say.

First, we claim that for K ≥K0, for each 1 ≤ h ≤K0, there exists an index set Q(K)
h ⊂

{1, · · · ,K} such that

P
{
Zt ∈Rh0 4∪i∈Q(K)

h
R̂

(K)
i

}
=O(T−1) and max

i∈Q(K)
h

‖βh0 − β̂
(K)
i ‖=Op(T

−1/2). (E.4)
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We will prove the claim recursively. Specifically, we are to show that if (E.4) holds for K =
K̃ , then it also holds forK = K̃−1, by showing that the index pair for merged regimes (i, h)

from the K̃-segments model to the (K̃ − 1)-segments model satisfies (i, h) ∈Q(K̃)
k for some

1≤ k ≤ K̃ .
We start with K = 4, where (E.4) is ensured by Theorem 6.1. For the case of K = 3, we

now show that D(4)
T (i, h)<D

(4)
T (i′, h′) if {i, h} ⊂Q(4)

k for some 1≤ k ≤K0 and {i′, h′} 6⊂
Q(4)
k for any 1 ≤ k ≤ K0, which implies that the selected merged regimes leading to the

submodel with K = 3 are R̂(4)
i and R̂(4)

h which are asymptotically contained in the same
regime Rk0.

Case (1). If two indices {ik, hk} ⊂Q(4)
k , with some standard algebra, we can obtain

D
(4)
T (ik, hk) =S

(4)
ik,hk

− T
(4)
ik,hk

=HT (R̂
(4)
ik

)TΞ−1
T HT (R̂

(4)
ik

),

where

HT (R̂
(4)
ik

) = {Ip −GT (R̂
(4)
i )G−1

k,T }
√
TET

{
εtXt1(Zt ∈ R̂(4)

ik
)
}

and

ΞT =GT (R̂
(4)
ik

)−GT (R̂
(4)
ik

)G−1
k,TGT (R̂

(4)
ik

),

with GT (R̂
(4)
ik

) = ET [XtX
T

t 1{Zt ∈ R̂
(4)
ik

}] and Gk,T = ET [XtX
T

t 1{Zt ∈ Rk0}] for each

1≤ k ≤K0 and ik ∈ Q(4)
k . Using the martingale central limit theorem and the uniform law

of large numbers, it can be easily seen that

D
(4)
T (ik, hk) =Op(1), if {ik, hk} ⊂Q(4)

k for each 1≤ k ≤K0. (E.5)

Case (2). If the two indices {i, h} 6⊂ Q(4)
k for any 1≤ k ≤K0. Suppose that i ∈Q(4)

ĩ,
and

h ∈Q(4)

h̃
, for some 1≤ ĩ, h̃≤K0. Then Theorem 6.1 implies that that P{Zt ∈ R̂(4)

i \Rĩ0}=
Op(1/T ),‖βĩ0 − β̂i‖ = Op(1/

√
T ), and the same consistency also holds for R̂(4)

h and β̂h.
Then standard algebra leads to

Ti,h/T = ET [ε2t1{Zt ∈ R̂
(4)
i ∪ R̂(4)

h }] + op(1), and (E.6)

Si,h/T = ET [ε2t1{Zt ∈ R̂
(4)
i ∪ R̂(4)

h }] + δT

ĩh̃,0
GT (R̂

(4)
i )GT (R̂

(4)
i∪h)

−1GT (R̂
(4)
h )δĩh̃,0 + op(1),

where GT (R̂
(4)
i∪h) = ET [XtX

T

t 1{Zt ∈ R̂
(4)
i ∪ R̂(4)

h }]. By Assumption S2 and the ULLN,
the smallest eigenvalue of GT (R̂

(4)
i )GT (R̂

(4)
i∪h)

−1GT (R̂
(4)
h ) is asymptotically bounded away

from some constant λ1 > 0. Since δĩh̃,0 = βĩ0−βh̃0 6= 0 as required in Assumption S2, from
(E.6) we obtain

D
(4)
T (i, h) = Si,h − Ti,h =Op(T ), if {i, h} 6⊂ Q(4)

k for any 1≤ k ≤K0. (E.7)

This together with (E.5) and (E.7) implies that the optimal regime merger from K = 4 to
K = 3 is the pair of regimes that are contained in the same Q(4)

k for some 1 ≤ k ≤ K0.
Hence, (E.4) with K = 3 is verified. Using the same argument the claim (E.4) with K = 2
and 1 can also be established, respectively, provided that K ≥K0.

(E.4) implies that with some relabelling,

P{R̂(K0)
k 4Rk0}=O(T−1) and‖βk0 − β̂k‖=Op(T

−1/2), (E.8)

for each 1 ≤ k ≤ K0. which reveals that the back-elimination procedure consistently esti-
mates the true model, if it can be shown that P(K̂ =K0)→ 1 as T →∞.
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We now show that P{CT (K)< CT (K0)} → 0 when K 6=K0, which ensures the model
selection consistency.

(i) First, if K <K0, by the definition of C(K), we have

P{CT (K)< CT (K0)}= P
{
log

(
ST (K)

ST (K0)

)
<
λT (K0 −K)

T

}
. (E.9)

As λT /T → 0, to show the above probability converges to 0, it suffices to show that
P{ST (K) > ST (K0)} → 1. Note that (E.4) means that |Q(K0)

h | = 1 for each 1 ≤ h ≤ K0.
Similar to (E.7), it is straightforward to show that D(K)

T (̂iK , ĥK)> 0 for each 1≤K ≤K0,
meaning that any under-segmented models have increased sum of squared residuals. As
ST (K)− ST (K0) =

∑K0

k=K+1D
(k)
T (̂ik, ĥk), we have P{ST (K)>ST (K0)}→ 1, which im-

plies (E.9) converges to 0 as λT /T → 0.
(ii) If K >K0, meaning that the K-regime model is over-segmented, we have

P{CT (K)< CT (K0)}= P
{
log

(
ST (K0)

ST (K)

)
>
λT (K −K0)

T

}
= P

{
ST (K0)− ST (K)

ST (K)/T
> T

(
e

λT (K−K0)

T − 1
)}

, (E.10)

and ST (K0) = ST (K) +
∑K

k=K0+1D
(k)
T (̂ik, ĥk). Because of (E.5) we have ST (K0) −

ST (K) = Op(1). In addition, ST (K0)/T = ET (ε2t ) = Op(1). By the Taylor expansion,

T
(
e

λT (K−K0)

T − 1
)
=O(λT )→∞. Hence, the probability in (E.10) converges to 0, .

Combining Cases (i) can (ii), we have P{CT (K)< CT (K0)} → 0 if K 6= K0. Since
K̂ = argmin1≤K≤4 C(K) and 1≤K0 ≤ 4, it implies that P(K̂ =K0)→ 1 as T →∞. This
together with (E.8) completes the proof.

APPENDIX F: AUXILIARY ASSUMPTIONS

F.1. Sufficient conditions for some assumptions. In this part, we provide some suffi-
cient conditions for Assumptions 2.(i), 3.(ii), and 4.(i).

ASSUMPTION S1. (i) For each l ∈ {1,2}, let ql = ZTγl0. There exists some j ∈
{1, · · · , dl}, such that for almost surely Z−1,l, the conditional density fql|Z−1,l

(q) is contin-
uous at q = 0 and fql,t|Z−1,l

(0)≥ c0 for almost surely Z−1,l, where c0 is a positive constant.

(ii) For each l ∈ {1,2}, there exists c1 > 0 and j ∈ [dl] such that the conditional density
fql|Z−1,l

(q|z)< c1 for almost surely q ∈R and z ∈ Z−1,l, where Z−1,l is the support for the
distribution of Z−1,l and is a compact set in Rdl−1.

(iii) For each l ∈ {1,2}, there exist some jl ∈ [dl] and c2 > 0 such that the condi-
tional density f(q1,q2)|(Z−j1,1,Z−j2,2)(q1, q2|z1,z2) < c2 for almost surely (q1, q2) ∈ R2 and
(z1,z2) ∈ Z−j1,1 ×Z−j2,2, where Z−jl,l is the support for the distribution of Z−jl.l and is a
compact set in Rdl−1 for each l ∈ {1,2}.

The following lemma shows that Assumption S1 implies Assumptions 2.(i), 3.(ii), 4.(i)
and 4.(iii).

LEMMA F.1. (i) Under Assumption S1 (i), there exists some constant δ1 > 0, if ϵ < δ,
then P(|ql|< ϵ|Z−1,l)≥ c0ϵ/2 almost surely, implying Assumptions 2.(i) and 4.(i).
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(ii) Under Assumption S1 (ii), there exist some positive constants δ2 and c1 such that
if γ1,γ2 ∈ N (γl0; δ2), then |P(ZT

l γ1 < 0)− P(ZT

l γ2 < 0)| ≤ c3‖γ1 − γ2‖, which ensures
Assumptions 3.(ii).

(iii) Under Assumption S1 (iii),there exist some positive constants δ3 and c2 such that
if γ1,γ2 ∈ N (γ10; δ0) and γ3,γ4 ∈ N (γ20, δ2), then P(ZT

1γ1 < 0 < ZT

1γ2,Z
T

2γ3 < 0 <
ZT

2γ4)≤ c2‖γ1 − γ2‖‖γ3 − γ4‖, which ensures Assumptions 4.(iii).

PROOF. (i) The continuity of fql,t|Z−j,l
(q) at q = 0 in Assumption S1 (i) implies that there

exists δ1 > 0 such that fql|Z−1,l
(|q|)≥ fql|Z−1,l

(0)− c1/2≥ c1/2. The assertion then follows
from P(|ql|< ϵ|Z−i,l) =

∫ ϵ
−ϵ fql|Z−1,l

(q)dq.
(ii) Let ∆l(γ) =Z

T

l (γl0 − γ). Then for any γ1,γ2 ∈N (γl0; δ1), where δ1 < δ0/B,

P{ZT

l γ1 > 0>ZT

l γ2}=P{∆l(γ1)< ql <∆l(γ2)}=EZ−1,l

{∫ ∆l(γ2)

∆l(γ1)
fql|Z−1,l

(q)dq

}
.

Let M > 0 be the constant such that ‖z‖∞ < M for all z ∈ Z−j,l and let δ1 = δ0/M ,
which ensures ‖∆l(γ)‖∞ ≤ δ0 whenever γ ∈ N (γl0; δ1). It is then straightforward to
see that P{ZT

l γ1 > 0>ZT

l γ2} ≤ c1M‖γ1 − γ2‖. Similary, P{ZT

l γ1 < 0<ZT

l γ2} can be
bounded in the same way. Since |P(ZT

l γ1 < 0)− P(ZT

l γ2 < 0)|= P{ZT

l γ1 > 0>ZT

l γ2}+
P{ZT

l γ1 < 0<ZT

l γ2}, the desired result follows.
(iii) It follows from the similar argument as in (ii) and thus is omitted.

F.2. Assumptions for degenerated models. The following assumption adapts Assump-
tions 2-4 of the main article for the segmented regression with the number of regimes K0 = 4
and the number of splitting hyperplanes L0 = 2 to the degenerated models with 1≤K0 ≤ 3
and 0 ≤ L0 ≤ 2, which include Model (6.1)–(6.5) in the main article. Let (Y,X,Z) ∼ P0.
Suppose the data generated from a model

Y =

K0∑
k=1

XTβk01{Z ∈Rk(γ0)}+ ε, (F.1)

where the number of regimes 1≤K0 ≤ 3 and the number of splitting hyperplanes 0≤ L0 ≤
2. In particular, Rk(γ0) =Z1 ×Z2 for the global linear model (K0 = 1), the splitting coeffi-
cient γ0 = γ10 or γ20 when L0 = 1, and γ0 = (γT

10,γ
T

20)
T when L0 = 2. We use L0 ⊂ {1,2}

to indicate the indices of the splitting hyperplanes. For instance, if the true model has two
hyperplanes then L0 = {1,2}; and if it has only one hyperplane H20 = {zT

2γ20 = 0} then
L0 = {2}. The following assumptions are needed for Theorem 6.1.

ASSUMPTION S2. For each i ∈ L0 and k,h ∈ {1, · · · ,K0}, the following conditions
hold. (i) If L0 = 2, then Z1 and Z2 are not identically distributed. (ii) There exists a j ∈ [di]
such that P(|qi| ≤ ϵ|Z−j,i) > 0 for almost surely Z−j,i for any ϵ > 0, where Z−j,i is the
vector after excluding Zi’s jth element. Without loss of generality, assume j = 1. (iii)
For any γ ∈ Γ1 × Γ2, if P{Z ∈Rk(γ0)∩Rh(γ)} > 0, then the smallest eigenvalue of
E{XXT|Z ∈Rk(γ0)∩Rh(γ)} ≥ λ0 for some constant λ0 > 0. (iv) If (k,h) ∈ S(i), then
‖βk0 −βh0‖> c0 for some constant c0 > 0, where S(i) is defined in (3).

ASSUMPTION S3. (i) E(Y 4)<∞, E(‖X‖4)<∞ and maxi∈L0
E(‖Zi‖)<∞. (ii) For

each i ∈ L0, P(ZT

i γ1 < 0<ZT

i γ2)≤ c1‖γ1−γ2‖ if γ1,γ2, ∈N (γi0; δ0), for some constants
δ0, c1 > 0.
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ASSUMPTION S4. (i) For i ∈ L0, there exist constants δ1, c2 > 0 such that if ϵ ∈ (0, δ1)
then P(|qi| < ϵ|Z−1,i) ≥ c2ϵ almost surely. (ii) For i ∈ L0, there exists a neighborhood
Ni = N (γi0; δ2) for some δ2 > 0, such that infγ∈Ni

E(‖X‖|ZT

i γ = 0) > 0 almost surely.
(iii) If L0 = 2, then P(ZT

1γ1 < 0 < ZT

1γ2,Z
T

2γ3 < 0 < ZT

2γ4) ≤ c3‖γ1 − γ2‖‖γ3 − γ4‖
for some constant c3 > 0 if γ1,γ2 ∈ N1 and γ3,γ4 ∈ N2. (iv) For some constant r > 8,
supγ∈Ni

E(‖X‖r|ZT

i γ = 0)<∞ and supγ∈Ni
E(εr|ZT

i γ = 0)<∞ almost surely.

APPENDIX G: EXTENSION TO GENERAL SEGMENTED REGRESSIONS

In this section, we discuss the extension of the proposed four-regime segmented regression
to general segmented regressions with more than L = 2 splits. The range of numbers of
regimes split by L hyperplanes is presented by the following result, whose proof can be seen
in Buck (1943).

THEOREM G.1. Suppose that there are L≥ 1 hyperplanes Hl = {z ∈Z : zTγi = 0}Li=1.
Then the number of regimes K split by these L hyperplanes satisfies

L− 1≤K ≤
min(L,d)∑
i=0

(
L

i

)
. (G.1)

REMARK G.1. The above bound in sharp and can be attained in general hyperplane
arrangement (see e.g., Orlik and Terao, 2013). It reveals the challenges in the general seg-
mented linear regressions. First, in the large or high dimensional setting where d > L, the
right-hand of (G.1) becomes 2L. It implies that each possible combination of the signs of the
{zTγi,1 ≤ i ≤ L} determines a specific region. Under such a circumstance, the computa-
tion burdens will be quite high in both optimization and model selection to select among the
models with 1≤K ≤ 2L. Moreover, the increase of K can bring more risk of overfitting.

On the other hand, under the regime where d < L, the maximum number of region Kmax

is
∑d

i=0

(
L
i

)
= O(Ld). The main difficulty is in specifying the model form of segmented

models , since it can be challenging to know which hyperplanes constitute the boundaries of
each regime due to the complications of hyperplane arrangements. One possible solution is
to via some data-driven method to determine the boundaries of each regime, while it brings
more computational complexity and requires further studies.

APPENDIX H: ADDITIONAL SIMULATION RESULTS

H.1. Simulations under models with less than four regimes. This section presents re-
sults for the estimation based on the four-regime model when the underlying models were de-
generated with less than four regimes. The true parameters for the degenerated were specified
in Section 7.2 of the main paper. The data generating processes for {Xt,Z1,t,Z2,t, εt}Tt=1 in-
cluded three the independence, the AR(0.2) and the MA(0.2) settings as that in Section 7.1
of the main paper. Table S2 summarizes the empirical averages of the L2-distance between
the sets of the true parameters and their estimates under the four-regime model: D(G0, Ĝ)
and D(B0, B̂). In addition, to evaluate the cost of not knowing the number of the underly-
ing regimes, we also estimated γ0 and β0 in the so-called oracle setting, in which the three
degenerated models were known to have three or two regimes and the parameters were es-
timated by the LS estimators of the corresponding models, denoted by γ̂3REG, β̂3REG and
γ̂2REG, β̂2REG, respectively. The three-regime LS estimators were obtained via a new MIQP
algorithm presented in Appendix C of the SM, while β̂2REG of the two-regime estimators
were calculated by the algorithm of Lee et al. (2021).
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Table S2 shows that the estimation errors as reflected by the distance measures D(G0, Ĝ)
and D(B0, B̂) reduced as the sample sizes T was increased, confirming that the parameters
of the degenerated models could be consistently estimated by the four-regime model. By
comparing D(G0, Ĝ) with ‖γ0 − γ̂3REG‖ and ‖γ0 − γ̂2REG‖ in Table S2, we found that the
estimation errors for γ0 based on the four-regime model were about the same as those of
γ̂3REG or γ̂2REG, respectively, meaning that the four-regime estimators achieved similar level
of accuracy as the estimators from the models with correctly specified number of regimes,
for the boundary coefficient estimation. The reason is that the four-regime estimator can
efficiently use the data points located near the underlying boundaries as γ̂3REG or γ̂2REG did.
On the other hand, Table S2 shows that the estimation accuracy for the regression coefficients
based on the four-regime model were inferior to the estimators based on the models with the
true number of regimes when the sample size was small. This was expected since the four-
regime based estimation made redundant regime partitions, and hence did not effectively used
the subsample belonged to the same underlying regime.
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TABLE S2
Empirical average D(G0, Ĝ),D(B0, B̂), which represent the L2 distance between the set of true parameters and

their estimates by the four-regime model, and ∥β0 − β̂3REG∥2,∥γ0 − γ̂3REG∥2, or ∥β0 − β̂2REG∥2 and
∥γ0 − γ̂2REG∥2 (multiplied by 10) under the independent (IND), auto-regressive (AR) and moving average
(MA) settings for {X0

t ,Z
0
1,t,Z

0
2,t}

T
t=1 of the three-regime model (a.2) and the two-regime model (b). The

numbers inside the parentheses are the standard errors of the simulated averages.

Three-regime model (a.1)

T
IND AR MA

D(G0, Ĝ) D(B0, B̂) γ̂3REG β̂3REG D(G0, Ĝ) D(B0, B̂) γ̂3REG β̂3REG D(G0, Ĝ) D(B0, B̂) γ̂3REG β̂3REG

200
0.55 4.53 0.53 4.33 0.67 4.14 0.61 3.96 0.68 4.29 0.66 3.99
0.26 1.24 0.22 0.95 0.35 0.82 0.33 0.84 0.30 1.15 0.27 0.84

400
0.30 3.09 0.32 2.95 0.30 2.85 0.32 2.73 0.30 2.84 0.31 2.74
0.18 0.72 0.17 0.61 0.15 0.67 0.17 0.57 0.17 0.64 0.16 0.60

800
0.14 2.24 0.16 2.15 0.15 1.92 0.15 2.01 0.15 1.96 0.15 1.95
0.07 0.51 0.06 0.48 0.08 0.47 0.08 0.45 0.06 0.37 0.05 0.37

1600
0.08 1.49 0.08 1.48 0.08 1.32 0.07 1.31 0.07 1.38 0.07 1.38
0.04 0.35 0.04 0.34 0.04 0.28 0.04 0.27 0.04 0.28 0.04 0.27

Three-regime model (a.2)

T
IND AR MA

D(G0, Ĝ) D(B0, B̂) γ̂3REG β̂3REG D(G0, Ĝ) D(B0, B̂) γ̂3REG β̂3REG D(G0, Ĝ) D(B0, B̂) γ̂3REG β̂3REG

200
2.08 4.91 2.09 4.64 2.29 4.58 2.27 4.23 2.21 4.53 2.25 4.28

(1.52) (1.09) (1.58) (1.01) (1.64) (1.08) (1.70) (0.95) (1.61) (1.05) (1.59) (0.97)

400
1.00 3.35 1.03 3.20 1.12 3.04 1.13 2.91 1.12 3.06 1.10 2.91

(0.85) (0.73) (0.87) (0.71) (0.81) (0.63) (0.80) (0.63) (0.82) (0.67) (0.78) (0.63)

800
0.49 2.31 0.48 2.26 0.53 2.08 0.51 1.98 0.49 2.14 0.49 2.06

(0.35) (0.47) (0.35) (0.46) (0.39) (0.45) (0.38) (0.44) (0.35) (0.44) (0.36) (0.43)

1600
0.26 1.62 0.26 1.58 0.24 1.48 0.24 1.44 0.24 1.51 0.23 1.47

(0.18) (0.33) (0.18) (0.33) (0.16) (0.31) (0.17) (0.29) (0.17) (0.31) (0.17) (0.30)
Two-regime model

T
IND AR MA

D(G0, Ĝ) D(B0, B̂) γ̂2REG β̂2REG D(G0, Ĝ) D(B0, B̂) γ̂2REG β̂2REG D(G0, Ĝ) D(B0, B̂) γ̂2REG β̂2REG

200
0.55 3.25 0.54 2.85 0.59 2.95 0.60 2.54 0.64 3.26 0.64 2.59

(0.44) (0.83) (0.43) (0.74) (0.45) (0.78) (0.48) (0.68) (0.49) (0.80) (0.48) (0.68)

400
0.30 2.28 0.30 1.97 0.29 2.10 0.31 1.78 0.28 2.31 0.31 1.83

(0.24) (0.59) (0.23) (0.49) (0.23) (0.49) (0.22) (0.46) (0.20) (0.54) (0.21) (0.49)

800
0.14 1.69 0.14 1.41 0.14 1.25 0.15 1.23 0.15 1.49 0.14 1.29

(0.10) (0.43) (0.11) (0.35) (0.12) (0.32) (0.13) (0.32) (0.11) (0.36) (0.11) (0.32)

1600
0.07 1.02 0.07 0.97 0.06 0.93 0.07 0.88 0.07 0.94 0.07 0.90

(0.05) (0.27) (0.06) (0.25) (0.05) (0.23) (0.05) (0.22) (0.05) (0.24) (0.05) (0.23)
Global linear model

T
IND AR MA

D(B0, B̂) β̂GLR D(B0, B̂) β̂GLR D(B0, B̂) β̂GLR

200
1.81 1.33 1.48 1.22 1.87 1.19

(0.67) (0.49) (0.55) (0.47) (0.62) (0.45)

400
1.23 0.92 1.02 0.87 1.24 0.86

(0.44) (0.33) (0.37) (0.33) (0.46) (0.33)

800
0.83 0.69 0.78 0.59 0.85 0.64

(0.23) (0.23) (0.27) (0.22) (0.30) (0.22)

1600
0.62 0.46 0.51 0.43 0.54 0.43

(0.24) (0.18) (0.18) (0.15) (0.18) (0.16)
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To gain further insights on the performances of the four-regime estimates under the de-
generated models, we investigated the simulation results in more details by comparing adja-
cent estimated regression coefficients. Figure S1 displays the box plots of the squared dis-
tances between the estimated adjacent regression coefficients ‖β̂j − β̂k‖2 where the under-
lying samples were generated from the three-regime model (a.2). Figure S1 shows that as
the sample size T was increased, ‖β̂1 − β̂2‖2,‖β̂2 − β̂3‖2 and ‖β̂4 − β̂1‖2 converged to
‖β10 − β20‖2,‖β20 − β30‖2 and ‖β30 − β10‖2, respectively, while ‖β̂3 − β̂4‖2 decreased
to 0, indicating that β̂1 and β̂2 were consistent estimates of β10 and β20, respectively, and
both β̂3 and β̂4 converged to β30. Similar results for the two-regime model are also shown
in Figure S2, which reveals that the estimated regression coefficients under the four-regime
model could still provide consistent estimates to the underlying coefficients of the degener-
ated models.

Fig S1: Box plots for the squared distances of the estimated adjacent regression coefficient
for the three-regime model (a.2). The red dashed lines indicate the squared distances of the
true regression coefficients for the adjacent estimated regimes.

Fig S2: Box plots for the squared distances of the estimated adjacent regression coefficient
for the two-regime model. The red dashed lines indicate the squared distances of the true
regression coefficients of the three-regression model, with ‖β10 −β20‖2 = 22.
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TABLE S3
Empirical Model specification results under segmented models with regimes from K0 = 4 to K0 = 1 under 500

times replications. The performances were evaluated by the empirical average of the estimated number of
regimes K̂ , the discrepancy between the true regimes and the estimated regimes D(R, R̂) and the L2 estimation
error of regression coefficients D(B, B̂). The penalty parameter λT in the model selection criterion was set as
λT ∈ {5,5 log(T ),5 log2(T )}. The numbers inside the parentheses are the standard errors of the simulated

averages.

Model T
λT = 5 λT = 5 log(T ) λT = 5 log2(T )

K̂ D(R, R̂) D(B, B̂) K̂ D(R, R̂) D(B, B̂) K̂ D(R, R̂) D(B, B̂)

Model (2.1)
(K0 = 4)

200
4.00 0.03 0.61 3.99 0.03 0.62 2.78 0.87 2.24

(0.00) (0.02) (0.12) (0.08) (0.04) (0.16) (0.87) (0.91) (1.05)

400
4.00 0.01 0.41 4.00 0.01 0.41 3.92 0.05 0.53

(0.00) (0.01) (0.08) (0.00) (0.01) (0.08) (0.27) (0.13) (0.43)

800
4.00 0.01 0.29 4.00 0.01 0.29 4.00 0.01 0.29

(0.00) (0.00) (0.05) (0.00) (0.00) (0.05) (0.00) (0.00) (0.05)

1600
4.00 0.00 0.20 4.00 0.00 0.20 4.00 0.00 0.20

(0.00) (0.00) (0.04) (0.00) (0.00) (0.04) (0.00) (0.00) (0.04)

Model (6.1)
(K0 = 3)

200
3.44 0.12 0.50 3.00 0.02 0.48 2.85 0.13 0.75

(0.50) (0.11) (0.11) (0.00) (0.02) (0.11) (0.38) (0.30) (0.69)

400
3.39 0.10 0.34 3.00 0.01 0.33 3.00 0.01 0.33

(0.49) (0.11) (0.07) (0.00) (0.01) (0.07) (0.00) (0.01) (0.07)

800
3.33 0.08 0.23 3.00 0.01 0.22 3.00 0.01 0.22

(0.47) (0.11) (0.05) (0.00) (0.00) (0.05) (0.00) (0.00) (0.05)

1600
3.33 0.08 0.16 3.00 0.00 0.16 3.00 0.00 0.16

(0.47) (0.11) (0.03) (0.00) (0.00) (0.03) (0.00) (0.00) (0.03)

Model (6.2)
(K0 = 3)

200
3.00 0.02 0.47 3.00 0.02 0.47 2.71 0.19 0.97

(0.00) (0.01) (0.12) (0.00) (0.01) (0.12) (0.46) (0.27) (0.80)

400
3.00 0.01 0.31 3.00 0.01 0.31 3.00 0.01 0.31

(0.00) (0.01) (0.07) (0.00) (0.01) (0.07) (0.00) (0.01) (0.07)

800
3.00 0.01 0.22 3.00 0.01 0.22 3.00 0.01 0.22

(0.00) (0.00) (0.05) (0.00) (0.00) (0.05) (0.00) (0.00) (0.05)

1600
3.00 0.00 0.15 3.00 0.00 0.15 3.00 0.00 0.15

(0.00) (0.00) (0.03) (0.00) (0.00) (0.03) (0.00) (0.00) (0.03)

Model (6.3)
(K0 = 2)

200
3.38 0.14 0.35 2.03 0.01 0.30 2.00 0.01 0.30

(0.59) (0.11) (0.10) (0.17) (0.01) (0.08) (0.00) (0.01) (0.08)

400
3.54 0.13 0.24 2.01 0.01 0.20 2.00 0.01 0.20

(0.51) (0.11) (0.07) (0.08) (0.01) (0.05) (0.00) (0.00) (0.05)

800
3.53 0.12 0.16 2.00 0.00 0.14 2.00 0.00 0.14

(0.53) (0.11) (0.04) (0.06) (0.00) (0.04) (0.00) (0.00) (0.04)

1600
3.50 0.13 0.12 2.00 0.00 0.10 2.00 0.00 0.10

(0.55) (0.12) (0.03) (0.00) (0.00) (0.03) (0.00) (0.00) (0.03)

Model (6.4)
(K0 = 2)

200
2.93 0.23 0.37 2.00 0.02 0.34 2.00 0.02 0.34

(0.80) (0.18) (0.10) (0.04) (0.02) (0.11) (0.00) (0.01) (0.11)

400
2.80 0.20 0.25 2.00 0.01 0.24 2.00 0.01 0.24

(0.76) (0.18) (0.07) (0.00) (0.01) (0.07) (0.00) (0.01) (0.07)

800
2.68 0.17 0.17 2.00 0.00 0.16 2.00 0.00 0.16

(0.70) (0.17) (0.05) (0.00) (0.00) (0.05) (0.00) (0.00) (0.05)

1600
2.70 0.18 0.15 2.00 0.01 0.14 2.00 0.01 0.14

(0.69) (0.17) (0.14) (0.06) (0.03) (0.14) (0.00) (0.03) (0.14)

Model (6.5)
(K0 = 1)

200
1.98 0.28 0.17 1.04 0.02 0.13 1.00 0.00 0.13

(0.70) (0.19) (0.07) (0.01) (0.00) (0.05) (0.00) (0.00) (0.05)

400
1.93 0.27 0.12 1.02 0.01 0.09 1.00 0.00 0.09

(0.68) (0.19) (0.04) (0.00) (0.00) (0.03) (0.00) (0.00) (0.03)

800
1.84 0.25 0.08 1.00 0.00 0.07 1.00 0.00 0.07

(0.59) (0.18) (0.03) (0.00) (0.00) (0.02) (0.00) (0.00) (0.02)

1600
1.85 0.25 0.06 1.00 0.00 0.05 1.00 0.00 0.05

(0.64) (0.19) (0.02) (0.00) (0.00) (0.02) (0.00) (0.00) (0.02)
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H.2. Multiple solutions selected by the MIQP. In our estimation procedure, it is re-
quired to produce multiple solutions for γ and then take their averages to approximate the
centroid of the least squares set Ĝ. In this part, we demonstrate the performance of such an
approximation by the following simulation.

The data generation process for {(Yi,Xi,Zi)}Ti=1 was the same as the independence set-
ting as that in Section 7.1. The sample size used in this simulation was T = 800. The true
splitting coefficients were γ10 = (1,1,0)T and γ20 = (1,−1,0)T, respectively. By setting the
parameters SolutionNumber = 200 and PoolGap = 0 in the MIQP solver in GUROBI, we ob-
tained 200 solutions whose objective values all attained the minimum, which ensured that
these solutions were selected from the Ĝ. Figure S3 displays that the selected values were
nearly uniformly distributed, and their averages approximated to the true values colored in
red and the center of Ĝ.

Fig S3: Distributions of the selected 200 optimal solutions for the splitting coefficients. The first
elements of γ1 and γ2 were omitted since they were normalized as 1. The true values were indicated
in red, and the averages of the multiple solutions were indicated in green.

APPENDIX I: ADDITIONAL CASE STUDY RESULTS

The following Table S4 reports basic summary statistics of the involved variables in the
training and testing sets.
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TABLE S4
Sample means of the training and testing sets of the meteorological variables. The numbers inside the

parentheses are the sample standard deviations and the numbers inside the square brackets are the sample
correlations with the covariates and PM2.5.

Season PM2.5 TEMP DEWP PRES WD IWS log(BLH) RAIN
Training sets

Spring
48.31 15.87 -1.47 1008.09 3.51 5.89 5.39 0.09

(49.00) (8.05) (9.40) (6.78) ( 1.28) (8.95) (1.79) (0.84)
[-0.21] [0.22] [-0.10] [0.06] [-0.20] [-0.25] [-0.06]

Summer
38.70 27.34 16.46 998.76 3.40 4.27 5.31 0.46

(27.08) (4.41) (5.50) (4.34) (1.33) (7.53) (1.62) (2.70)
[0.01] [0.52] [-0.12] [0.02] [-0.19] [-0.10] [-0.01]

Fall
49.93 15.42 5.82 1013.51 3.14 3.99 4.87 0.15

(36.19) (9.34) (9.81) (8.00) (1.43) (7.43 ) (1.53) [1.99]
[0.04] [0.26] [-0.25] [-0.07] [-0.19] [-0.12] [-0.07]

Winter
58.77 0.07 -14.62 1021.05 3.26 4.89 4.58 0.00

(56.65) (5.03) (7.07) (6.68) (1.29) (8.46) (1.56) (0.01)
[-0.03] [0.57] [-0.40] [0.11] [-0.27] [-0.33] [-0.01]

Testing sets

Spring
54.99 16.87 0.82 1005.28 3.64 11.59 5.46 0.09

(42.81) (6.33) (10.29) (6.09) (1.24) (20.94) (1.74) (0.84)
[-0.28] [0.54] [-0.57] [-0.01] [-0.33] [-0.04] [-0.02]

Summer
41.61 26.96 17.16 997.93 3.31 4.95 5.41 0.32

(29.42) (3.95) (4.16) (3.33) (1.28) (8.08) (1.50) (1.21)
[0.06] [0.57] [0.30] [0.07] [-0.29] [-0.02] [-0.01]

Fall
37.77 13.75 4.25 1014.92 3.25 4.50 4.89 0.17

(32.64) (7.74) (10.71) (6.06) (1.40) (11.34) (1.47) (1.79)
[-0.09] [0.16] [-0.12] [-0.16] [-0.15] [-0.11] [-0.02]

Winter
56.48 -0.31 -14.61 1021.99 3.18 5.09 4.67 0.01

(83.69) (4.14) (6.51) (4.86) (1.25) (7.75) (1.56) (0.08 )
[-0.15] [0.35] [-0.36] [0.05] [-0.22] [-0.32] [-0.02]

Table S5 reports some important statistics of each estimated regimes for the four seasons,
including thes ample sizes, the fitting RMSEs and the sample means of PM2.5 and the regres-
sion covariates of the estimated regimes.
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TABLE S5
The sample sizes, the fitting RMSEs and the sample means of PM2.5 and the regression covariates in the four
seasons. The numbers inside the parentheses are the sample standard deviations of the sample means above

them. RAIN was not included in seasons except for summer since their precipitation was rather sparse.

T RMSE PM2.5 TEMP DEWP PRES log(BLH) RAIN

Sp
ri

ng

1 119 10.4
67.7 15.5 10.9 1006.7 5.6

(40.0) (5.5) (4.1) (5.9) (1.3)

2 793 12.7
61.5 15.9 2.6 1006.6 5.0

(55.7) (8.8) (7.0) (6.6) (1.7)

3 528 10.6
23.7 15.9 -10.5 1010.6 5.9

(23.0) (7.4) (4.7) (6.5) (1.8)

Su
m

m
er

1 180 9.4
61.9 28.6 23.6 995.9 4.2 0.12

(37.3) (3.4) (1.1) (3.2) (5.6) (0.6)

2 910 8.4
42.6 27.1 17.9 998.6 2.7 0.2

(22.8) (4.4) (2.9) (4.2) (3.2) (1.2)

3 343 4.7
16.1 27.1 8.8 1000.6 8.3 8.6

(10.6) (4.6) (3.4) (4.3) (13.0) (10.1)

Fa
ll

1 252 9.2
61.1 15.7 13.3 1011.3 3.8

(36.9) (5.1) (4.2) (5.1) (0.9)

2 738 8.9
53.7 18.5 9.4 1011.4 5.0

(36.2) (9.1) (6.2) (6.4) (1.5)

3 448 9.1
37.4 10.2 -4.4 1018.3 5.3

(32.1) (9.4) (8.8) (9.5) (1.6)

W
in

te
r

1 288 16.3
94.4 3.0 -9.7 1018.0 5.0

(62.1) (5.2) (6.8) (5.8) (1.7)

2 194 11.2
54.9 1.5 -16.2 1021.1 5.2

(43.3) (6.0) (5.7) (7.4) (1.7)

3 760 11.7
34.5 -2.0 -21.6 1025.9 4.8

(45.0) (4.9) (6.6) (7.0) (1.6)

4 157 15.8
71.6 -3.6 -16.2 1022.2 3.5

(55.3) (4.4) (5.3) (7.3) (1.0)
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Fig S4: Estimated regression coefficients (indicated by dots) and their 95% confidence inter-
vals (indicated by bars) of each regime. The estimated coefficients of the Lag term were all
significantly above 0 and thus not reported in this figure.
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The following Figure S5 displays the estimated meteorological regimes on PM2.5. It shows
that in spring, for instance, Regime 1 had the highest DEWP and the highest proportion of
CV among the three regimes, which is a known condition to encourage secondary generation
of PM2.5 and to constitute a unfavourable atmospheric diffusion condition, and thus resulted
in high PM2.5. Regime 2 had reduced percentages of CV and lower DEWP level compared
to Regime 1, which alleviated the polluting level and led to better diffusion of PM2.5 and
can be regarded as a transitional state from either the high pollution to low pollution or
vice versa. In Regime 3, the northerly winds occupied the leading position and DEWP was
significantly lower. It is noted that the northerly wind brings cleaner and cooler air from the
north, and under such circumstances the PM2.5 concentration could be effectively reduced
via the removal process at a lack of secondary generation. Therefore, Regime 3 represented
a cleaning regime.

It is found that the regime-splitting for summer and fall shared the same pattern with the
spring, namely Regime 1 with high PM2.5 level accompanied by a large proportion of CV and
high DEWP, indicating an air stagnation; Regime 2 is a transitional regime which had reduced
DEWP and increased winds with about 50% southerly winds; and Regime 3 (cleaning) tended
to had significantly large amount of strong northerly, in particular northwesterly wind and
low DEWP, which are known favorable conditions to lower the PM2.5. For winter, Regime
1 was still the most polluting regime and Regime 3 represented the cleaning regimes as the
other seasons. However, the transitional regime was divided to two regimes: Regimes 2 and
4 with dominated wind directions being southeasterly and southwesterly wind, respectively,
representing two different transitional modes. Regime 4 had more southwesterly wind which
would bring the accumulated PM2.5 along the foot of Taihang Mountain to Beijing, bringing
in more transported air pollutants. As validated in Figure S5, Regime 4 of winter indeed had
heavier PM2.5 than Regime 2.
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Fig S5: For each regime, the bars indicate sample means of PM2.5 (scales on the left side), TEMP,
DEWP and log(BLH) (scales on the left side) and the lengths of error bar are twice of the sample
deviations. The wind rose plots displays distribution of wind directions (via width of angles) and
average speed (via length of radius). Sample sizes of each regime are reported in the parentheses of its
subtitle.

(a) Spring

(b) Summer

(c) Fall

(d) Winter



70 I ADDITIONAL CASE STUDY RESULTS

REFERENCES

Bickel, P. J. and M. J. Wichura (1971). Convergence criteria for multiparameter stochastic processes and some
applications. The Annals of Mathematical Statistics 42(5), 1656–1670.

Billingsley, P. (1968). Convergence of Probability Measures. New York: Wiley.
Buck, R. C. (1943). Partition of space. The American Mathematical Monthly 50(9), 541–544.
Chernozhukov, V. and H. Hong (2004). Likelihood estimation and inference in a class of nonregular econometric

models. MIT Department of Economics Working Paper.
Doob, J. L. (1953). Stochastic Processes. London;New York;: Wiley.
Doukhan, P. (1995). Mixing: properties and examples, Volume 85. Springer Science & Business Media.
Györfi, L., W. Härdle, P. Sarda, and P. Vieu (1989). Nonparametric curve estimation from time series, Volume 60

of Lecture Notes in Statistics. Springer-Verlag, Berlin.
Hall, P. and C. C. Heyde (1980). Martingale Limit Theory and Its Application. Academic press.
Hansen, B. E. (2008). Uniform convergence rates for kernel estimation with dependent data. Econometric The-

ory 24(3), 726–748.
Hsing, T. (1995). On the asymptotic independence of the sum and rare values of weakly dependent stationary

random variables. Stochastic Process. Appl. 60(1), 49–63.
Knight, K. (1999). Epi-convergence and stochastic equisemicontinuity. Preprint.
Lan, Y., M. Banerjee, and G. Michailidis (2009). Change-point estimation under adaptive sampling. The Annals

of Statistics 37(4), 1752 – 1791.
Lee, S., Y. Liao, M. H. Seo, and Y. Shin (2021). Factor-driven two-regime regression. Ann. Statist. 49(3), 1656–

1678.
Meyer, R. M. (1973). A Poisson-type limit theorem for mixing sequences of dependent “rare” events. Ann.

Probability 1, 480–483.
Orlik, P. and H. Terao (2013). Arrangements of Hyperplanes, Volume 300. Springer Science & Business Media.
Peligrad, M. (1982). Invariance principles for mixing sequences of random variables. The Annals of Probability,

968–981.
Resnick, S. I. (2008). Extreme values, regular variation and point processes. Springer Series in Operations

Research and Financial Engineering. Springer, New York.
Rockafellar, R. T. and R. J. Wets (1998). Variational analysis. Springer-Verlag, Berlin.
van der Vaart, A. (1998). Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics.

Cambridge University Press.
van der Vaart, A. and J. Wellner (1996). Weak Convergence and Empirical Processes: with Applications to

Statistics. Springer Science & Business Media.
Wald, A. (1944). On cumulative sums of random variables. The Annals of Mathematical Statistics 15(3), 283–296.
Yu, P. (2012). Likelihood estimation and inference in threshold regression. Journal of Econometrics 167(1),

274–294.
Yu, P. and X. Fan (2021). Threshold regression with a threshold boundary. Journal of Business & Economic

Statistics 39(4), 953–971.


	Introduction
	Model setup
	 Estimation and asymptotic properties
	Identification and consistency
	Convergence rates and asymptotic distributions

	Computation
	Smoothed regression bootstrap
	Degenerated models and model selection
	Simulation Study
	Estimation under the four-regime model
	Estimation under models with less than four regimes
	Model selection
	Smoothed regression bootstrap

	Case Study
	Discussion
	Acknowledgements
	Supplementary Material
	References
	Supplement
	Auxiliary lemmas
	Proofs for Section 3
	Proof for Section 4 and additional algorithms
	Proofs for Section 5
	Proofs for Section 6
	Auxiliary assumptions
	Extension to general segmented regressions
	Additional simulation results
	Additional case study results
	References




